
SECURITY CLASSIFICATION OF THIS PAGE (WhenData Lnered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS " I
BEFORE COMPLETING FORMA ,I. REPORT NUMBER 2.:GOVTACCESSION No. 3. RECIPIENT'S CATALOG NUMBER j

AFIT/CI/NR 88- 46
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A M.rHOOLO', FofL OCEJA(LID -84UO MS THESIS
. PERFORMING O1G. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(a)

HL.L.,LIP(L.O 5. kibL B1ZOOK. IT

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: 0 'k.\J LF iTy 6 r Lox, '

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
1988

0) 13. NUMBER OF PAGES

,_ __.__-"_ _ _103
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

(,0 AFIT/NR
0) Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

ISa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) u.

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D:T f
0 ELECTE

AUG 0 4 188

'7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

SAME AS REPORT

IS. SUPPLEMENTARY NOTES Approved for PubliigReleasej JAW AFR 190-I

LYNN E. WOLAVER t" _ ,4-r
Dean for Resear t nd Professional Development
Air Force Institu e of Technology
Wright-Patterson AFB OH 45433-6583

19. KEY WORDS (Continue on reverse aide It necessary end identify by block number)

20. ABSTRACT (Continue on reverse aide If necessary and Identify hy block number)

ATTACHED

.-

t.

DD, IA FOM 1473 EDITION OFI NOV 6S IS OBSOLETE u'CASFF

_.. .. g _ . .

SECURITY CLASSIFICATION OF THIS PAGE (*hen Date Entered)

A METHODOLOGY FOR SCENARIO-BASED REQUIREMENTS EXPLORATION

p

t

By

HILLIARD B. HOLBROOK III

U"

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1988

- V S VP,, s ~ ~ q p ~ ~ ~U~"~-

ACKNOWLEDGEMENTS

I would like to thank the good people and things who made this masterpiece

possible. First and foremost, I would like to thank Dr. Stephen Thebaut for his

involvement and commitment to this effort. I also wish to thank Andy, Lowell, and Mark

for their ideas and feedback. Moreover, I would like to thank Jane and Belda-Beast for

enduring my imposition on their day-to-day routine for the past two semesters. I am also

grateful to my Macintosh for doing so many neat things and not breaking when the

warranty expired. Finally, I must thank John Cleese for his portrayal of Basil Fawlty who

served as my role model throughout.

~ OTIC

A.'- K. KNSPLCTED

6

.,,, ..

,. ,.*.2

iii

. .,.

1%

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

A B S T R A C T ... v

CHAPTERS

1 INTRODUCTION ... 1

Requirements, Communication and the Software Problem 1
Research Objectives ... 4
Organization of the Thesis .. 7

2 BACKGROUND .. 8

Cognitive Processes in Software Development 8
Software Development Practices ... 22
Scenarios in Software Development .. 32

3 A METHODOLOGY FOR SCENARIO-BASED
REQUIREMENTSEXPLORATION (SBRE) 43

Objectives 43
Conceptual Architecture .. 44
P rocess .. 50

4 TOWARDS AN SBRE TOOL ... 57

Overview of Hypertext ... 57
Apple's HyperCard' T ... 60
SBRE in HyperCard .. 61

5 SUMMARY AND CONCLUSIONS .. 68

Conclusions-Assessment of Objectives .. 68
Future Research and Open Issues .. 69
S um m ary .. 73

APPENDICES

A THE LIBRARY SYSTEM -- A SCENARIO ILLUSTRATING SBRE 75

B DETAIL OF THE GOAL DECOMPOSITION STACK 83

.iii

REFERENCES .. 99

BIOGRAPHICAL SKETCH ... 103

p

I

t_

I,

iv|

- -' ~ ~ V - - V * ~ t.*b t S

V %~' ~ r~~ -t ~ - - - - - V *'

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A METHODOLOGY FOR SCENARIO-BASED REQUIREMENTS EXPLORATION

By ",

HILLIARD B. HOLBROOK III

April 1988

Chairman: Stephen M. Thebaut
Major Department: Computer and Information Sciences

This thesis proposes a methodology for conducting requirements exploration based

on the use of scenarios as a means for communication between a software system's user

and designer. Requirements exploration is the process of determining what functions a

user expects from a system and how the system should behave as it performs those

functions. The effectiveness of this process has a large impact on the ultimate success of a

software system.

The proposed methodology reflects several key features associated with effective

requirements exploration. The first of these is the parallel and iterative development of a
C

high-level design along with a set of system requirements. Because complex software

systems are wicked problems, their requirements must be developed in light of possible

solutions. A second feature is the use of scenarios as a basis for communication between

users and designers. Due to their flexibility and informality, scenarios overcome some of

the barriers associated with userdesigner dialogs. A third feature involves users and

designers together considering provisional designs. Such a process tends to uncover

unstated, or clarify misunderstood, requirements. Finally, the methodology provides forIv
Z,'s

, ,,-% ,, .,- . ,- -,, ,, . , , ., . , - . , .- , . .,- , - - - -.• -. • ., - ., - . .-.V,

an explicit linking between components of the design and the requirements that they satisfy.

This ensures that attention is paid to all aspects of a problem as a design is formulated.

To support this methodology, considerations for a hypertext-based tool are also

described. In general, hypertext systems provide a means for processing non-linear text

through the use of machine-supported links. This capability supports the linking which is a

fundamental component of the methodology's conceptual architecture. More specifically, a

mapping of this architecture into Apple's hypertext system, HyperCardT , is described.

vi

CHAPTER 1
INTRODUCTION

The hardest single part of building a software system is deciding
precisely what to build No other part of the work so cripples the
resulting system if done wrong. No other part is more difficult to
rectify later.

- Fred Brooks [Br87 p.171

This thesis addresses the general problem of determining what to build when

beginning a new software system. This introductory chapter provides an overview of the

problem, research area, and objectives of this thesis. The first section describes the general

problem motivating the research into requirements identification. The second section

explores the research itself and its objectives. In the final section, an overview of the thesis

is presented.

Requirements, Communication, and the Software Problem

In this introductory section, we will examine the role that inadequate requirements

definition and ineffective communication play in what has become known as the software

problem. The purpose is to highlight the need for research and improvements in the

requirements identification process. We will begin by first using some dismal statistics to

describe the software problem and then define requirements identification. From that point,

we will explore the relationship between requirements identification, poor communication,

and the software problem.

V 'uI ' ' " "" " ' . .' :

2

The Software Problem

"Most projects are completed significantly over budget, require more effort than

estimated, and are completed late" [Je84 p.81]. This is a conclusion reached by Jenkins et

al. in a study of seventy-two system development projects in twenty-three major U.S.

corporations. Although Jenkins concludes that users are "generally satisfied with their

systems" [Je84 p.81], another source suggests otherwise. At the 1982 DMPA software

management conference, it was indicated that 25% of software development is never

delivered, and 47% is delivered but not used [G182].

These figures all illustrate a "syndrome euphemistically called the software

problem" [Tu87 p.2]. Belady described its scope as, "universal, not only from IBM out

to the other mainframe companies, but also out to the aerospace companies. I found out

that all of them had significant software problems and had several thousand professional

programmers working for them" [My85 p.691.

Requirements Identification

Requirements analysis is a process in which "what is to be done" is
elicited and modeled. This process has to deal with different
viewpoints, and it uses a combination of methods, tools, and actors.
The product of this process is a model, from which a document, called
requirements, is produced. [Le87 p.2 6]

The above definition comes from a survey of requirements analysis authored by

Leite [Le87]. In it, he points out that there is a great deal of confusion concerning the

product and the process of requirements analysis. The result he says, is the eternal debate

over what the difference between requirements and specifications is in terms of their use

later in the project. Leite resolves the issue by determ-""- whether or not the process in

question addresses the topic of requirements elicitation.

Elicitation is a term used to describe the proce.,cs related to
understanding, finding and gathering information. It should also
consider the task of unfolding the tacit knowledge, and the

3

communication process between users and analysts.... Elicitation can
be seen as consisting of three components: fact-finding,
experimentation, and communication. [Le87 p.281

For our purposes, the terms requirements elicitation, requirements exploration, and

requirements identification are defined by the above definition and used interchangeably.

The Role of Requirements Identification in the Software Problem

What role does the requirements identification process play in the software

problem? As observed by many authors, if done incorrectly, it is a major culprit. Scharer

noted: "One of the most common reasons systems fail is because the definition of system

requirements is bad" [Sc81 p.139]. Jenkins et al. found that 65% of the projects they

reviewed suffered to some degree from faulty or incomplete requirements [Je84].

Moreover, they found that 78% of the project leaders reported additional requirements

being discovered after approval of the requirements statement, only 37% of which were

treated as new development requests [Je84]. Finally, according to a study by the Savant

Institute, 56% of all errors come from the requirements analysis phase of development

[An83 p.17].

How is it that missed requirements can be so devastating? A nasty characteristic of

missed requirements is that they tend to go unrecognized in a traditionai development effort

for a long time. This is coupled with the "observable fact that the longer errors remain

undiscovered in the software, the more costly they are to remedy" [Ho82 p.881. The net

effect is that unarticulated requirements take a long time to recognize, and are therefore very

expensive to fix.

The Role of Communication in the Software Problem

Communication plays an enormous role in requirements identification. Weaver

defined communication "to include all of the procedures by which one mind can affect

1to* " ,""-, 4 ."" €,, " "
' '

," ,r. , ," ,- ,- - -, ,, . .,,. ,, .% . .+. . . .

4

another" [We49 p.15]. During requirements identification, effective communication 5'

between users and designers has taken place when they share the same vision of a problem

and what must be done to solve it.

Unfortunately, effective communication between users and designers is very

difficult to achieve. In fact, a Delphi survey of programming managers revealed that

communication between clients and designers were the largest source of problems in

software [Sc74]. Malhotra notes: "such studies indicate that a better method of

communicating goals from the ultimate users or buyers of programs and the software

designer could very significantly impact the cost of software" [Ma80 p. 133].

Research Obiectives

The preceding section clearly shows the need for research in, and improvements to b.

the requirements exploration process and the communication that takes place therein. This

section outlines the research objectives associated with this thesis.

Upstream Activities

According to Belady [My85], the software development process begins with a ,%

world of fuzzy ideas, and ends with a world of bits and bytes. Belady divides the process loll

at the point where there exists a relatively well formalized set of system specifications.

Referring to the well-known waterfall diag-am, upstream activities are characterized by a

set of vague, intuitive mental processes that involve transforming the fuzzy ideas into

relatively well formalized specifications. On the other hand, downstream activities involve

more formal activities such as specification techniques, languages, compilers, testing, and

verification.

Up to this point, there has been relatively little research into the upstream activities.

Instead, computer science has focused on the downstream activities. Sadly, without an

'.5

_ _ ._ __, ,__ . .. _ , ' ... ' ' ':.;'z - ". . .:. : : : : : : .: ::. : ¢ v " ,'. ,, , .,.. . . ,. ,,_.''.'

5

equal emphasis on the upstream activities, software developers may in fact be solving the

wrong problems. The effect icre is aptly described by von Neumann: "there's no sense in

being precise about something when you don't even know what you're talking about"

[Le87 p.3].

The importance of research into upstream activities and requirements exploration in

particular is underscored by Brooks: "the most important function that the software builder

performs for the client is the iterative extraction and refinement of the product

requirements" [Br87 p.171. He goes on to say: "one of the most promising of the current

technological efforts... is the development of approaches and tools for rapid prototyping

of systems as prototyping is part of the iterative specification of requirements"

[Br87 p.171.

Rapid Prototyping

As a response to the inability of the traditional method (a.k.a. the waterfall method)

of software development to adequately support requirements analysis, rapid prototyping

has evolved as a promising alternative. Prototyping involves quickly developing a version

of the software that provides the basic functionality of the final system without being bound

by the same hardware, size and performance constraints [Br871. .

Although there has been a fair amount of research done on rapid prototyping', there

are no well-accepted methodologies for its use. Accordingly, there are many views

towards defining and applying prototypes. It has been found that prototypes serve as an

extremely effective basis for communication between users and designers [Go83].

Moreover, their use has provided for more successful systems in terms of user acceptance

lTumer's thesis [Tu87] provides a good overview on rapid prototyping.]
• -, . *. % ¢'. - '. e€ - - - ', . . .,''' ", - -.. .S.,, ."..- -. .-.-. , ,-.... .-. _ -,.. s

6

[Bo84]. Unfortunately, prototypes have also proven to be hard to manage and a very

expensive way to explore requirements [Ho821.

Scenario-Based Requirements Exploration

It has been suggested that scenarios may offer an inexpensive alternative to
prototypes in terms of expressing the behavioral characteristics of a proposed system

[Ho82, We87]. Scenarios can be thought of as operational examples of a hypothetical

system's behavior as experienced by a user. Simply stated, this area of research aims to

provide a quick, inexpensive and effective way of conducting requirements exploration

based on the use of scenarios as a point of focus for communication between the user and

designer. The benefit is to provide software developers with a fast, effective, and cheap

way of assessing provisional solutions to a user's problem and uncovering unstated

requirements in the process. We henceforth refer to this process as scenario-based

requirements exploration.

Towards this goal, this thesis provides a general background of the theory and

process of software development with respect to requirements exploration. Based on this

material, a high level architecture and methodology are described for conducting

scenario-based requirements exploration. A general structure for developing tools to

support the scenario-based requirements exploration process will be provided, and the

methodology described will serve as basis for empirical research to determine the

applicability of a scenario-based approach in various situations.

Associated with the proposed methodology are advantages related to the design

process in general. Perhaps the most important of these is the incorporation of design into

the requirements exploration process. Furthermore, the methodology provides for explicit

linking between specific requirements and features of the design. Finally, the methodology

7 B

provides a structure that facilitates the consideration of all of the requirements as a design is

generated.

Organization of the Thesis

Chapter 2 is a background study that serves as a basis for the objectives and

components of the methodology. In it, the principles and process of software development

are explored with respect to identifying requirements. The first section concerns cognitive

processes involved in software development including communication, problem solving,

and design. The second section concerns present software development practices and

includes an overview of requirement determination strategies. The final section investigates

the use of scenarios as a flexible and informal method of communication in the design

process. Conclusions drawn from this chapter serve as a basis for the methodelogy

presented in the following chapter.

Chapter 3 describes a methodology for scenario-based requirements exploratiol.

The first section describes a conceptual architecture for the types of information capture i

and manipulated during requirements exploration. The second section explains the process

as an evolution of information in the architecture. Related to this material, Appendix A

presents a hypothetical example of the use of the methodology.

Chapter 4 explores the applicability of a hypertext-based tool to support the

methodology. The first section provides an overview of hypertext in general as it relates to

the characteristics of the methodology. The next section offers a brief overview of

HyperCard and describes how the conceptual architecture can be constructed in

HyperCard. Appendix B describes in some detail, the implementation of such a system.

Finally, Chapter 5 concludes the thesis with a summary of the ideas presented, an

assessment of the methodology and a discussion of further research.

N%

" "," ' ' " " " . ' ". 9 , " k Iw . E" ' (k "

CHAPTER 2
BACKGROUND

In this chapter, background material relevant to requirements exploration is

presented. First, the cognitive processes involved in software development are explored

and discussed. From there, two ways in which software is developed, the waterfall

method and prototyping, are explored along with their associated advantages and

drawbacks. Finally, we will take a look at the role scenarios can play in software

development.

Cognitive Processes in Software Development

The upstream software development activities involve various cognitive processes,

the effectiveness of which determine, to a large degree, the effectiveness of systems

development in general. In this chapter, the processes of communication, problem solving

and design are discussed. From this discussion are derived the objectives and components

of a requirements exploration methodology presented in the next chapter.

Communication

The communication process plays a major role in nearly every phase of software

development, but particularly in requirements exploration. Steele and Nowell stress this

importance:

During needs determination, effective communication between
information system users and information systems designers is critical--
creative exploration of the problem environment is imperative....
The immediate usability of newly implemented information systems is
directly proportional to the quality of cognitive creativity. [St83 p.226]

8

JR 9 . ,,

9

Further emphasizing the importance of communication, a Delphi survey of programming

managers pointed to communication problems as the biggest source of problems in

software [Sc74]. Consequently, any improvements in the communication process could

very significantly impact total system cost. To examine the communication process, we

will now explore a mathematical model for the communication process and discuss some

hindrances to effective communication.

MESSAGE I
!INFORMATION TRANSMITTER,

ISOURCEURC
151

MESSAGE 2
SDESTINA=TION *_ E2 RECEIVER

Figure 2-1. Weaver's Mathematical Model of Communication [We49]

The Communication process - a mathematical model

In the simplest sense, the communication process involves three entities; the

originator, the signal, and the recipient. Communication takes place when the originator

transmits a signal which is then received and interpreted by the recipient [Bo7 1]. Although

this simple model can be further specified in any one of a number of other models,

Weaver's mathematical modcl of communication [We49] is suitable for explaining station

to station, one way communication. In 1949, Warren Weaver developed a mathematical

! _

M:7K KAXMM MIIVW 17 ,1 7 V777-Y-7-7TC

10

model for communication as his analysis of the importance of Claude Shannon's work on

the mathematics of information theory [Bo7 I].

Weaver defined communication "to include all of the procedures by which one mind

can affect another" [We49 p. 11]. The components of his model, shown in Figure 2-1, are

explained as follows. A message is formulated at the information source (i.e., the mind of

the originator) to be sent to the destination (i.e., the recipient). To do so, the originator

encodes the message to be sent and employs a transmitter (e.g. a mouth, pencil, or

keyboard) to change his message into a signal which is sent over the channel to the

recipient. The recipient acts as a reverse transmitter, translating the received signal back

into a message. Effective communication occurs when the message received matches the

message sent by the information source.

A very important element of the model related to the effectiveness of communication

is noise. Weaver defined noise as "certain things not intended by the information source

added to the signal" [We49]. The effect of noise for the most part is to distort the signal in

such a way that when it is received and decoded, it may not be the message intended.

Barriers to communication

Unfortunately, there are several influences that turn information into noise. These

are described by Orrin Klapp in his book on the quality of life in our information society

[K186]. Disrupting influences most relevant to the design process are decoding difficulties,

bad complexity, sheer overload, and the dearth of feedback.

Decoding difficulties involve excessive effort on the part of the receiver. One of the

main culprits in decoding difficulties is the use of jargon. According to Klapp, "our world

is filled with jargons that baffle understanding While jargon may serve specialists,

it makes language noisier--and more boring--to almost everybody else" [K186 p.87].

Rather than enhancing communication, jargon may serve as a proccupying cipher to the

receiver.

/ j j,%v\.\ V .. * . , , ~ ~ ~ . V rr w
p * I*' . *

II '

In addition to decoding, the receiver is burdened with organizing the messages that

he receives. Usually, a degree of complexity is more desireable than simplicity. As Klapp

describes it, "good complexity has a pattern that is intelligible and often pleasing to the

human mind--a signal that we can hope to understand and manage" [K186 p.91].

Alternatively, bad complexity is characterized by an element of confusion on the part of the

receiver because no pattern is presented to serve as a key for organizing the messages.

A third barrier discussed by Klapp is sheer overload. It is an overload of channel

capacity. As described earlier, channels carry the signals to the receiver. Individuals vary

in their capacity to handle information. Accordingly, when the rate or amount of

information exceeds a receiver's capacity, information becomes noiselike.

Finally, and perhaps most important from a designers point of view is what Klapp

calls the dearth of feedback. As he put it, "lacking news of where one succeeded or failed

puts a person in the predicament of the king who wore no clothes, unable to see what is

wrong and rectify performance. Large volumes of information without feedback doesn't

solve problems, but adds to the difficulty of finding fact or meaning" [K186 p.921.

Summary of communication

To briefly summarize, communication is a critical cognitive process involved in

requirements exploration as well as the entire software development process.

Consequently, there is great potential payoff for improvements in communications,

especially between users and designers. A mathematical model of the communication

process was discussed. One of the components of this model is noise, the effect of which p

is to distort messages. Relating to requirements exploration were four barriers to

communication which affect noise: decoding difficulties, bad complexity, sheer overload,

and the dearth of feedback.

S

12

Problem Solving

Vitalari and Dickson defined problem solving in systems analysis as "the reasoning

process the analyst uses to analyze an information requirements determination problem and

to synthesize a solution" [Vi83 p.9 4 9]. In this section, problem solving as it relates to

requirements exploration is discussed. First, Newell and Simon's general theory [Ne72] is

briefly reviewed, and then two related types of problems, wicked and ill-structured, are

considered.

General problem solving theory

In order to advance our understanding of how humans think, Newell and Simon

assembled several decades of work into a general theory of human problem solving

[Ne72]. The theory applies to information processing systems in general, of which humans

are a specific case. It is based on two fundamental concepts, the task environment and the

problem space.

The task environment is the environment within the real world that is coupled with a

goal, problem, or task. Formulated within limits imposed by the task environment, the

problem space is composed of abstractions of the task environment. The problem space

represents where the problem is solved and the way in which a decision maker chooses to

work on the problem. Among the components within the problem space are: states of

knowledge about the task, operators or information processes producing new states, the

initial state of knowledge, and the desired goal state. In short, the problem space contains

the total knowledge available to solve the problem, including the knowledge and experience

of the solver.

Effective problem solving is associated with the ability of the problem solver to

extract and exploit information from the task environment within the problem space.

Newell and Simon noted that "the effectiveness of a problem solving scheme depends

13

wholly on its reflecting aspects of the structure of the task environment" [Ne72 p.824].

Since humans have a limited capacity for dealing with complex problems, they employ a

concept related to the problem space known as bounded rationality. Bounded rationality

involves constructing simplifications in order to deal with complexity. These

simplifications are usually in the form of simplified models of the task domain. In a study

by Vitalari and Dickson, proficient systems analysts were found to use a general model to

bound the problem space and aid in the efficient search for requirements [Vi83].

Wicked and ill-structured problems

With respect to the general theory, we will now examine some features associated

with software design problems. Design problems share characteristics with two classes of

problems known as ill-structured and wicked problems. Accordingly, design problems

must be approached and evaluated somewhat differently than more well defined problems.

Characteristics of analysis problems. Vitalari and Dickson listed six characteristics

of the analysis task domain with respect to problem solving [Vi83].

1. At the inception, there exist ill-defined boundaries, structure, and a degree of

uncertainty about the nature and make up of the solution.

2. The solutions to analysis problems are artificial in that they are designed and

many potential solutions exist for any one problem.

3. Analysis problems change as they are being solved due to the organizational

context and multiple participants involved in the specification process.

4. Solutions require interdisciplinary skill and knowledge.

5. The knowledge base of analysts is continually evolving so the analyst must be

ready to adapt to changes in technology as well as different ways of

interacting with users.

~ ~ 'v~

14

6. The process of analysis is primarily cognitive in nature requiring the analyst

to structure the problem, process diverse information, and develop logical and

consistent specifications. All other skills such as interpersonal interaction and

organizational skill facilitate this cognitive process.

These characteristics relate closely to two types of problems known as wicked problems

and ill-structured problems which we will now explore.

Wicked problems. Rittel and Webber coined the term wicked problems to describe

problems such as social planning efforts [Ri73]. For example, in a pluralistic society, they

noted that there are no objective criteria for concepts such as equity. Wicked problems

contrast with tame problems in that tame problems have a clear mission and therefore a

criteria with which a solution can be judged.

Accordingly, wicked problems cannot be precisely defined, and beyond that,

cannot be evaluated in any objective sense. Guindon noted that many design problems,

especially for novel applications, share the following subset of the characteristics with

wicked problems [Gu87]:

1. Wicked problems lack a single correct formulation and every formulation of a

wicked problem corresponds to a possible solution.

2. There is no stopping rule, no single set of properties that describe when a

solution (goal state) is reached - one can always reach a better solution so

resource limits serve as the stopping rule.

3. There is no exhaustive set of possible operators to be used at different stages

of the solution process.

Conklin and Richter summarize the implications of viewing design problems as

wicked problems as follows

Because large scale software design is a wicked problem, the design
process itself must be very complex. The formulation of problems, the
identification of conceivable solutions (some based on previous, similar

-w- w 1.

15

problems), and the evaluation of solutions in the absence of well-
defined stopping rules, must all be significant and complicated
components of any successful design process. Furthermore, because,
as Rittel and Webber noted, the formulation (i.e. understanding) of the
problem requires some knowledge of the conceivable solutions, these
design activities must all occur concurrently, and not in separate, distinct
phases. [Co85 p.2]

Ill-structured problems. Closely related, perhaps synonymous, to wicked problems

are ill-structured problems discussed by Simon [Si73]. Ill-structured problems are defined

as problems whose structures lack definition. The design process is ill-structured in two

major respects. First, there is no definite criteria with which to test a solution. Second, the

problem space is not defined in any meaningful way. To illustrate problem solving in

design, Simon discussed the process employed by an architect to design a structure. He

points out that we are referring to a creative process here and not the situation in which the

architect simply selects an "off the shelf" design.

The architect's process. Initially, through discussion with the customer, the

architect has some user-specified constraints and an incompletely specified set of design

goals. From these incomplete goals, the architect formulates some global specifications.

Although he evokes a guiding organization and specific attributes from memory, at no time

in the process do they provide a complete procedure or information to design a house.

Rather, more well-defined subgoals are addressed and the resulting interrelations of the

subsolutions are incorporated into an overall design. With this approach, there are dangers

of inconsistencies among the subsolutions. However, these dangers are tempered by the

architect's skill in organizing his program for design [Si73].

Generally speaking, the architect's problem can be described as well structured in

the small, but ill structured in the large. As Simon says, "the whole design, then, begins to

acquire structure by being decomposed into various problems of component design, and by

evoking, as the design progresses, all kinds of requirements to be applied in testing the

design of its components" [Si73 p. 190].

.4

16

Serendipitous problem solving. As part of Microelectronics and Computer

Techonolgy Corporation's (MCC) investigation of upstream activites, Guindon et al.

conducted a verbal protocol study of professional software designers individually

designing an n-lift elevator system [Gu87]. From the study, they identified what they

considered to be the main sources of knowledge and processes which underlie the design

control strategies. Additionally, they provided some general observations of the designers

activities.

It was observed that a top-down structured approach was used only when a

solution could be formulated immediately from the set of requirements, more novel

situations required a higher degree of exploration. They observed an interesting problem

solving approach to novel problems, one they call serendipitous problem solving. While

not purely bottom-up, it involves approaching a novel problem by moving between

different levels of abstraction and detail, motivated by the recognition of partial solutions.

Coordination of the partial solutions can be a problem with serendipitous problem

solving. There is a tendency to forget to return to postponed subproblems. This was also

noted in Simon's architect's process as "interrelations among the well-structured

subproblems are likely to be neglected or underemphasized" [Si73 p. 191].

Summary of problem solving

Our discussion of the problem solving process began with an overview of Newell

and Simon's general theory. We presented the concepts of task environment and problem

space, as well as a brief look at effective problem solving. Following this, we discussed

two types of problems that share characteristics with design termed wicked and ill-

structured problems. Finally, two approaches to these problems, serendipitous problem

solving and the architect's process, were examined.

Z)I I It1 Z • , .' -& ' "'' " " ' . .

17

Designf

As we have already seen, the design process is a specific kind of problem solving.

According to Malhotra [Ma80], design problems are characterized by a lack of a specific

initial state and fuzzy goals that can not be mapped directly onto the design properties.

However, part of the design process involves formalizing and refining the requirements so

that they can be matched by the transformations (or system design). In this section, we

explore three models of the design process: Amkreutz' cybernetic model, Malhotra's model

of the cognitive processes in design, and Sasso and McVay's constraint/assumption model.

Cybernetic model of the design process

In 1975, J. H. A. E. Amkreutz presented a cybernetic model of the design process

[Am76]. Cybernetics is the theory of information processing dealing with the input,

transformation, and output of information. Consequently, a cybernetic model treats

information as a physical quantity apart from its carrier. Amkreutz' motivation for

developing the model was to form a basis for developing computer-aided design systems

which would provide for a better way of structuring, communicating, and processing the

information involved with the design process.

At the highest level, shown in Figure 2-2, the cybernetic model can be viewed as a

black box where input information Ip contains all of the relevant task related information

such as requirements and constraints. It is input into the design process P, producing an

output design Op. In broadest terms, the goal of the design process is to achieve an

equilibrium in which all of the requirements and constraints in Ip are satisfied by the

ultimate design Op.

To achieve this equilibrium, a feedback function operates within the design process

as illustrated in Figure 2-3. Here, a feedback function F evaluates the design generated in

18

the design generation function G using the criteria contained in the current input

information Ip and regulates the information flow Ig back into G.

Figure 2-2. Black box model of the design process [Am76 p. 1881

A further refinement of the feedback function, which Amkreutz calls the regulation

function, is illustrated in Figure 2-4. Here, an evaluation function E, consists of a memory Id
'p

function and a function that determines the deviation of the relevant parameters in the

design generation output, Og. Based on the nature of the deviation, a decision function D

determines how Ig is to be changed and passes this information to R, the regulation

function. The regulation function implements the strategy selected and makes the

modifications to Ig.

,, 1

G

Figure 2-3. Design process as a control function [Am76 p. 189]

-a

a'.

19

The model has two features that are relevant to our purposes. First is the view that

"preparation of design information, problem analysis, preliminary design and detailed

design are integrated parts of the same process" [Am76 p.190]. In other words, the

design process is not sequential and the formulation of the goals is done in parallel with the

design. The second important feature is the description of a feedback function that

evaluates and modifies the design.

IgH

IN.4

09

Figure 2-4. Regulation function [Am76 p. 19 01

Malhotra. Thomas. Carrol. and Miller

At IBM's Watson Research Center, Malhotra, Thomas, Carroll, and Miller studied

the design process in an effort to improve the design of computer software [Ma80].

Specifically, they were interested in the processes of articulation of requirements and the

generation and evaluation of subsolutions. They conducted a study of the design process

by videotaping and transcribing actual client-designer dialogs. In addition to developing a

model of design, they made the important observation that new and/or unstated

requirements were uncovered as clients and users evaluated solutions. Significantly, they

draw conclusions similar to Amkreutz' discussed in the previous section. They state:

The goal elaboration process and the design generation process coexist
within the design process. They are usually inextricably interlaced and ",

.

V'

20
they assist and strengthen each other; one fading into the other only to

rise again a little later. Design evaluation occurs, as required, within
the design generation process. [Ma80 p.133]

Based on their studies, a model of the design process was developed that involves a

cyclic iteration of three processes; goal elaboration, design generation and design

evaluation. The process is initiated by a user with a perceived need who attempts to

formulate and articulate this need into specific goals. Here, a designer with a detailed

knowledge of the design discipline is employed to help the user articulate his goals. The

process of statement and discussion of goals is called goal elaboration. In effect, it

involves the decomposition and selection of subgoals to a point where they are specific

enough to be considered functional requirements.

When the goals have been decomposed, the second process, design generation, in

which the designer formulates a design (or designs) that meets the functional requirements

specified in the goal elaboration process begins. When a design (or partial design) is

generated, design evaluation begins. This phase consists of the user and designer

discussing the various properties of a design and how well it satisfies the stated goals. If a

design is deemed satisfactory, it is accepted as a solution. However, during this process,

new or modified goals may be formulated which will initiate another cycle of goal

elaboration, design generation, and design evaluation. The cycle stops when all subgoals

of the problem decomposition have been addressed and accepted during the design

evaluation.

To summarize, the model presented by Malhotra is significant in several respects.

Perhaps most important is the observation that new or unstated requirements are uncovered

in the process of evaluating provisional solutions. Also important is the observation that

the formulation of goals and design are in fact intertwined parts of the same process.

, p
2p

- I'

p P P ~ * I9 P I 'I~p~q*.l

21

The Constraints/Assumptions Model

Sasso and McVay described a model of design that overcame many of the

weaknesses they found with previous models. Two of the features of their model are

important to us. First is the existance of links between the requirements and the aspects of

the design that satisfy those requirements. Second is the iterative nature of design which

they describe as a major component of the design process.

As the name implies, there are two basic components of this model, constraints and

assumptions. Constraints serve to define the limits of the design space and assumptions

are generated during the design process about the nature of the problem and its solution.

To form a strong link between the problem definition and the solution, these assumptions

must be explicitly stated and agreed upon by the user and designer. As these assumptions

are verified by the user, it is expected that constraints will be redefined. Furthermore, the

evaluation of these assumptions will uncover problems that redefine what has already been

done, in effect, to change previous assumptions. This is in keeping with Malhotra's model

in that an evaluation process involving the user reveals hidden or unstated requirements.

Also reflected in this model is the idea of design iteration. As with the Malhotra

model, the design problem is attacked by developing sub-solutions and presenting them to

the user, which in turn would modify the working set of assumptions. These iterations of

assumption formation, design generation and design evaluation progress in an ever

narrowing cycle until the point is reached where an acceptable solution is produced.

Summary of Design

In this section, we have explored models of the design process. It is significant that

all three models portray design as an iterative process in which both the goals and solutions

are developed in parallel using a feedback mechanism. Furthermore, we discussed the

observation by Malhotra that consideration of provisional solutions uncovers new

,V. -'' W-. .

&p.

22

requirements. Later, these conclusions will be incorporated into a requirements exploration

methodology.

Software Development Practices

The development of a software system is usually a lengthy and complex task

involving the identification of a user's information needs, the designing of a system to meet

those needs, and finally the practical application of the system. Accordingly, there exist

various methodologies with which to manage software development projects and the

communication within. In this section, we will look at current methods of software

development.

After reviewing a method for selecting a requirements determination strategy, the

traditional method of software development will be presented as the basis for subsequent

discussions of rapid prototyping and the use of scenarios in determining user requirements.

For each topic, a brief discussion of the method is presented along with a summary of its

strengths and weaknesses.

Selecting a Requirements Determination Strategy

Davis [Da82] details a process for selecting a requirements determination strategy

based on the the level of uncertainty associated with the problem environment. He defined

a strategy as "an approach for achieving an objective" [Da82 p.12]. A method or

methodology is the detailed means for achieving an objective.

To determine the level of uncertainty, Davis describes an evaluation used to assess

four elements within the development process. Shown in Table 2-1, these elements are: the

utilizing system, the information system, the users, and the analysts. From the evaluation

of the elements, one of four strategies is then selected:

....... NN 5F ~~. i', ?-W*« .''Q" 4........y i"44 '

23

Asking is selected for the lowest level of uncertainty. It assumes that the users

have a satisfactory way of structuring their information. Representative

methodologies include the use of closed questions, open questions,

brainstorming and the Delphi method.

Deriving from existing systems is associated with a somewhat higher degree of

uncertainty. It involves using an implemented system with an operational

history as a basis from which to elicit requirements. The focus here is on the

data inputs and outputs of the existing system. Accordingly, this is applicable

for fairly standardized operations.

Synthesis from characteristics of utilizing system is used in cases involving a high

degree of uncertainty. In essence, it entails developing the requirements

based on the activities of the object system. It is appropriate when a system is

changing in its content, form, or complexity. Representative methodologies

include; normative analysis, critical factors analysis, process analysis, and

decision analysis.

Iterative discovery is used in the highest levels of uncertainty and is virtually

synonymous with implementation prototyping. It involves capturing and

implementing an initial set of requirements. This provides an anchor from

which additional requirements are discovered and in turn implemented. This

strategy is effective in cases where (1) there is no well-defined model of the

information requirements, (2) the experience of the users and/or analyst is

insufficient to define the requirements, or (3) the user's information needs are

evolving.

To summarize, Davis's determination process is important to our discussion for

two reasons. First, it provides a good overview of the strategies that can be employed to

elicit requirements. But perhaps more importantly, it delineates the role of uncertainty in

requirements exploration.

24

Table 2-1. Characteristics of elements in the development process [Da82 p.22]

Elements in Examples of characteristics that:
development process Reduce uncertainty Increase uncertainty

Utilizing System Stable, well-defined Unstable, poorly understood
Programmed activities Nonprogrammed activities

Information system or Traditional, simple set Complex or unusual set
application system of requirements of requirements

Users Few users, high Many users, low
experience experience

Analysts Trained and experienced Little prior training or
with similar system experience with system

The Traditional Method of Software Development

To date, the most common and successful model of software development is what

we will call the traditional approach. Also known as the waterfall model, it was defined in

1970 by W. W. Royce and refined in 1976 by Boehm. Developed during a time when

software development was considered more of an art than a science, the waterfall approach

applied an engineering problem-solving approach to software development.

Description of the traditional method

The traditional model is characterized by a step-by-step linear sequence of

development phases from initial requirements gathering to the final system implementation.

Although known by different names and variations, Sommerville [So85] describes the five

phases of the traditional method as a) requirements analysis and definition, b) system and

software design, c) implementation and unit testing, d) system testing, and e) operation and

maintenance. Each phase produces a well defined output that becomes an input for the next

phase of development (except for the operations and maintenance phase which feeds all of

25

the previous phases). Control of the project is maintained via a series of baselines.

Baselines are points at which the software system definition is formally reviewed, agreed

upon by all parties (development and users), and then published as the new reference.

In the traditional scheme of things, requirements are developed solely during the

requirements and definition phase. In this phase, a problem or opportunity is investigated

and developed to produce the requirements specification. This document is then reviewed

and agreed to by all parties, including the user. From this point, the requirements are

assumed to be fixed, and software design begins. At project completion, the suitability of

a system developed in the traditional style is judged by how well the resulting system meets

the formal requirements specification.

Benefits of the traditional method

The traditional model has several benefits that can easily be understated. First and

foremost, it provides a manageable framework emphasizing the management and

communication aspects of systems development. As a result, progress on software

development projects can be monitored and to some degree, controlled. This in turn

reduces the risk associated with these projects, particularly for large, complex efforts.

Also, as Boehm points out [Bo84], one has the ability to integrate many small programs

into a large product using the traditional method. Finally, because the traditional model is

the standard for developing software, it serves as a common reference throughout the

industry.

Problems with the traditional method

Perhaps the main drawback to the traditional model is its rigidity. Feedback is

limited primarily to reviews between development phases. This means that the users must

know ahead of time, and be able to specify in detail, all of the decisions he is to make in

order to know what information he requires [Ac67]. Accordingly, the requirements

26

uncovered after the requirements development phase tend to be ignored until the

maintenance phase when they are far more expensive to incorporate. Moreover, these post-

implementation changes tend to deteriorate the functional structure within the software as

well as undermining the relationships between the users and designers [St83].

A further problem concerns the form in which the traditional design takes. It is not

until the implementation phase that code is written. Up to that point, the traditionally

developed system is defined solely by documentation. Unfortunately, software is hard to

visualize based on voluminous design documents. Brooks observed that "despite progress

in restricting and simplifying software structures, they remain inherently unvisualizable,

and thus do not permit the mind to use some of its most powerful conceptual tools"

[Br87 p.12]. Consequently, there exists a huge and expensive gap between the time the

requirements are established and the time their effects can be experienced by the users

[Tu87]. As a result, by the time tangible results are available for the users to scrutinize,

too much work has been done to allow for appropriate revisions [Sa87 p.7].

Additional problems with the traditional method, pointed out by McVay [Mc87],

involve the emphasis of the development effort. He notes that traditional development

methods are primarily solution rather than problem oriented. In practical terms, this means

that by using the traditional scheme, we can be systematically solving the wrong problem.

Moreover, McVay points out the lack of an explicit linkage between the user's problems

and the solutions provided by the system. 1%

Rapid Prototvping

In response to some of the aforementioned problems with the traditional method, a-

technique known as rapid prototyping has been gaining popularity. As does the traditional

method, the concept of rapid prototyping had its roots in hardware development. However

as Turner points out, the analogy between prototyping software and prototyping hardware p.

S,

27

is not a good one since hardware prototyping results in the first of a line of products, where

software development is associated with a single product [Tu87].

Defining rapid prototyping

As the term prototyping has been used in varying contexts over the past several

years, there is currently no universally accepted definition. The general intent is perhaps

best captured by McVay who point out, "it may be safe to say that the purpose of

prototyping is to provide pieces of a system to the user in the form of tangible, operating

subsystems over time in order to get feedback sooner on how to proceed with subsequent

implementations of the overall system" [Mc87 p.7]. James Johnson gives us a list of

examples of prototyping [Jo83]. Among them:

* A fourth generation language working model that will be rewritten in a

procedural language for implementation.

* A quick-and-dirty system intended to be enhanced over time until it is user

acceptable.

* Mock-ups of reports... and screens...

" An experiment to decide if a proposed system is feasible.

As with any new technique, the users of prototyping have developed many different

views of its use; hence the varied definitions. Accordingly, views of prototyping's

relationship to the traditional model is also widely varied. Some writers have suggested

prototyping as a replacement while others suggest it as a supplement to the traditional

method.

Evolve or discard?

Perhaps at the heart of this issue is the disposition of the prototype itself. Some

prototypes (described as throwaway) are built solely to describe the perceived behavior of a

system to a user, and then discarded. This philsophy embodies Brooks' advice; "Plan to

28

throw one away; you will anyhow" [Br75 p.7 21. Accordingly, Gomaa argues [Go83]

that prototypes are valuable as specification aids, but should not be released as a final

product. He suggests the use of an interpretive language with powerful data manipulation

features like APL to quickly develop a prototype emphasizing the user interface. Lehman

also expressed this view in his perception of a prototype as "a validation model that

displays sufficient characteristics of the desired system that, if satisfactory, could be used

to fulfil the system role" [Le82]. The effect here would be to either supplement or replace

the requirements specification phase of the traditional method.

Alternatively, a prototype could serve as a skeleton to be further developed into an .

end product, in effect replacing the traditional method. This view is reflected by the

methodology developed by Mason and Carey [Ma82]. Their approach uses scenarios,

prototyping, and a data-oriented design approach to approach applications that are highly

interactive in nature. They argue that if an evolutionary approach is adopted, the tools used

are different and geared towards maintainability. Additionally, they argue that in this

evolutionary approach, there are no surprises to the user in the transition to the final

version.

Prototyping classified by purpose

Providing some structure to the whole issue, Floyd categorized three approaches to

prototyping based on the purpose of each [F183]. Moreover, these approaches are assessed

with respect to their compatibility with the traditional method of software development. It

should be pointed out, as Turner does, that these approaches are not mutually exclusive

[Tu87]. Floyd's categories are as follows:

Exploratory Prototyping is done primarily to clarify the users needs. It is

employed mainly to point out alternatives and to make the effects of a user's

choice apparent. Exploratory prototyping is done in a throwaway manner and

so is compatible with the traditional model.

L!

V ~ ~,W V 4VV * *S q qJ ~ * ~ .. i-%

29

Experimental Prototyping evaluates proposed solutions. The prototype is built to

be evaluated in terms of feasibility, performance, or some other criteria. They

can either evolve or be discarded. This approach is compatible with the

traditional approach.

Evolutionary Prototyping is done primarily to cope with changing requirements.

Here a system is viewed as a sequence of versions. The evolutionary

approach implies a variance of the traditional model in that it is an iterative,

miniature traditional life-cycle in each phase of the prototype's development.

Applicability of prototvning

Rapid prototyping is not appropriate in every situation. Davis prescribes general

guidelines for determining system requirements [Da82]. His driving factor is the level of

uncertainty associated with the application both on the part of the user and designer.

Indeed, most of the literature dealing with prototyping suggests that it is best used in

situations involving a user with incomplete or unclear requirements [A184]. Related to

uncertainty is prototyping's applicability in situations employing innovative technology or

when approaches are used that may require a degree of experimentation [A184].

Advantages of prototyping

The use of prototyping has a number of advantages over the traditional model with

regard to the definition of user requirements. These advantages are realized in terms of

communication, human relations and lower overall project costs. A more subtle advantage

to prototyping is that it is geared more towards solving the right problem than simply fixing

a set of requirements, then focusing on the solution.

The most important advantages are related to quickly communicating system

capabilities to users in an understandable form [A184, Go83]. Perhaps the biggest

problem with the traditional approach is the length of time that users wait to see tangible

30

results. Because they are developed as quickly as possible, prototypes provide a realistic

view of how a system will satisfy users' needs much earlier in the process. The result is

that changes, if needed, can be made much earlier when they are much cheaper to make.

As a means of communication, prototypes are easily understood. Using

requirement specifications developed in the traditional method, it is very difficult for a user

to see how his needs are being interpreted. Prototypes, on the other hand, are "real" and

not subject to the levels of interpretation required using traditional requirements

documentation.

As well as improving communication between designer and user, prototyping

educates both. It is inevitable that designers learn something about the domain for which

they are designing, and that users learn something restrictions they impose on the designer.

As both parties assess the applicability of scenarios for given situations, they learn more

about the needs and constraints of the other [Ta82]. Consequently, a more realistic product

evolves from this learning process.

Other advantages involve the perceptions of the users. Since prototyping involves a

higher level of involvement on the part of the user, the user has a more realistic view of the

system and is more likely to accept the end product [A184]. Illustrating the point, an

industry survey of MIS managers conducted by Langle, Leitheiser and Naumann found a

higher level of perceived satisfaction on the part of users and designers with prototyped

systems [La84]. Another perception by the user is that of feasibility, or the ability of a

design to meet the needs [Tu87]. As Boehm pointed out in his study [Bo84], it is easy to

over-promise when specifying a system design. A prototype is concrete and real, and thus

reassures the user that his needs can be met.

A final advantage, depending on one's perspective, is cost. Boehm and Gomaa

argue that relatively high initial investment in developing prototypes is more than

compensated for in terms of costs that would otherwise be incurred in correcting problems

later in a project's life [Go83, Bo84].
.-

31
p-,

Disadvantages of prototving

There are several disadvantages associated with rapid prototyping but

unfortunately, there has been relatively little research done on the use of prototyping.

Research results presented here are based on surveys by Alavi [A184] and Langle et al.

[La84], and experiments by Boehm et al. [Bo84] and Alavi [A184].

The major complaints with prototyping involve difficulties in managing and

controlling prototyping efforts, especially in large, complicated projects [A184]. This is

mainly due to the lack of a well defined and accepted methodology associated with a lack of

experience. One of the strengths identified with the traditional method was the use of well

defined and accepted milestones and reviews to monitor progress. As of yet, no such

control exists for prototyping. Two other issues related to management involve the
a,'

tendency to ignore documentation and interfacing. Because prototyping emphasizes quick

development, documentation is not a by-product of the process and interfacing issues are

not adequately considered [La84, Sa87].

An additional disadvantage, depending on the is cost. Prototyping is a

very expensive way to identify requirements when compared to requirements identification

in the traditional method [Go83]. It is argued however that this initial expense is recovered

in terms of costs that would otherwise be incurred correcting a traditional project late in its

development or during its use [Go83, Bo84].

Finally, an increased involvement with users brings with it added problems in

managing human relations. One such problem is the users' misconception of progress.

After seeing a prototype running in a short period of time, the user may think the project is

nearing completion and become frustrated as the details are worked out [A184]. Also, users

may lose interest after the initial prototypes have been reviewed and the details have to be

considered.

lop .

32

Scenarios in Software Development

The main advantage of the prototyping approach to software development is more

effective and timely communication between the users and designers of software.

However, as noted by Hooper,

The concept of prototyping is considered desireable, but in actual
practice development costs have presented a major problem ...
Prototyping clearly would be a very attractive requirements identification
approach if low cost, ease-of-use, and timliness of results could be
achieved. [Ho82 p.90]

To address this situation, it has been suggested that the advantages of rapid prototyping can

be realized without the overhead of actually building prototypes by using scenarios

[Ho82, Ma82, St83].

This section of the thesis explores scenarios and discusses the. role they can take in

determining user requirements. After defining scenarios and discussing their use, we will

look at an existing methodology employing scenarios, and conclude the section with a

discussion of the applicability of scenarios and their relative strengths and weaknesses.

Background
a.

The idea of using scenarios as prototypes has appeared several times in computing

literature. After defining scenarios, we will examine research that suggests the use of

scenarios, or a similar concert, in the software development process.

Scenarios defined

Scenarios can be thought of as stories that illustrate how a percieved system will

satisfy a user's needs. Thinking of scenarios as stories is relevant. As Crowley observed,

"through stories we are able to have events brought before our minds.. . since they

consitute a nearly universal form for the organization and dissemination of experience, they

are an important means for creating social meaning and a shared sense of participation in

33

both a common culture and a particular social order" [Cr82 p. 81]. Young and Barnard's

definition is closer to the world of software development; they view a scenario as "an

idealized but detailed description of a specific instance of a human-computer interaction"

[Yo87 p. 291].

Hooper and Hsia

The term scenario-based prototyping was coined by Hooper and Hsia who

suggested the use of scenarios rather than implemented prototypes to develop a user's

requirements [Ho82]. They proposed the use of scenarios to capture the conceptual system

as visualized by the users using simulation and man-machine interface techniques. They

pointed out that while there are numerous methodologies for recording requirements and

identifying inconsistencies, they have not really helped the users in identifying those

requirements.

Scenarios, they proposed, could serve as the informal basis for communication in

the role of prototypes. They said, "in prototyping by use of scenarios, one does not

neccessarily model the system or any component thereof directly, but rather represents the

performance of the system for a selected sequence of events" [Ho82 p.90]. They point out

that in many cases, scenarios would obviously be quicker to formulate than full system

models and allow for faster feedback on the part of the user.

They argue that to be effective, a method must be very informal enough to facilitate

interaction with untrained users. The problem with the more formal systems is that they

share the same major problems of implementation prototyping of cost and time delays due

to their difficulty of use.

Hooper and Hsia's intention is that this research "be directed towards the

development of a methodology for devising and using scenarios in requirements

identification" [Ho82 p.901. With respect to the lifecycle, they feel that once a set of

34

requirements was achieved, the scenarios would continue to be useful as a guide to the

continued development of the system through the testing and maintenance phases.

Steele and Nowell

"Prototyping at the conceptual level is much less costly than prototyping at the

implementational level" [St83 p227]. Closely related to scenario-based rapid prototyping

is Steele and Nowell's idea of conceptual prototyping [St83]. Their work is motivated by

the recognition that "an unrecognized or unarticulated requirement is most often the impetus

for costly post-implementation system changes" [St83 p.2261. Based on Malhotra's

model of the design process [Ma80], they view the role of the designer as an idea generator

rather than simply an interviewer or observer and acknowledge the role of provisional

solutions in ur 7overing unstated requirements.

Steele and Nowell are not very specific about the process other than to say that

conceptual prototyping involves presenting conceptual level sub-solutions, or conceptual

prototypes, to a user for review rather than implemented prototypes [St83]. Certainly,

scenario-based prototyping can be considered a form of conceptual protyping and the

motivations for both serve to enhance the requirements exploration process in general.

Wexelblat

As part of MCC's investigation of the upstream process, Wexelblat [We87] has

investigated the general application of scenarios in gathering behavioral data on a system.

He views scenarios as an informal, natural way to describe how things behave and seeks to

exploit this property, allowing for enhanced communication between users and designers.

He views specifications for an information system as being composed of two parts:

functional and behavioral. Functional specifications are the more traditional statement of

what a system is to do, involving interfaces, data, and processing. Behavioral

specifications, on the other hand, describe "the way a system behaves, concentrating on

' >,z.

35

interactions between system and users... from the point of view of an external

observer or user" [We87 p. 2]. 4

The idea of "gathering behavioral data" can be thought of as scenario-based

prototyping; and although Wexelblat does not use the term, he hypothesized that scenarios

and prototypes contain similar information. With respect to the life-cycle, he suggestes that

scenarios could be used to determine which features of a system should be further

developed using impementation prototyping.

Young and Bernard

In an interesting application of scenarios, Young and Bernard seek to apply them as

early tests for proposed theories of Human-Computer Interaction (HCI) [Yo87]. Their idea

is to use scenarios to quickly "weed out theories whose scope is too narrow for them to

apply to many real HCI situations" [Yo87 p. 291]. Young and Bernard's interest is

impelled by what they perceive as a dysfunctional preoccupation with accuracy associated

with a cognitive science approach to developing HCI theories. This can be likened to the

preoccupation with solutions in the traditional method of software development. 1 The

suggested application for scenarios is very similar to those involved in defining user

requirements.

It seems reasonable to liken a proposed software system to a proposed theory of

HCI. Both involve building models of the user and both seek to balance accuracy and

scope. Moreover, both HCI and software development run "the risk of failing to predict

the behavioural consequences of a proposed design" [Yo87 p.292].

The process is somewhat different but the desired result, timely feedback, is the

same. The difference being that the set of scenarios chosen for use in HCI are developed

from empirical observations of the user, while scenario-based prototypes represent an

* I 1A disadvantage to the traditional model discussed by McVay [Mc87].

', ; ;';%.. ,.N'.-,':.. ' .T ', ...??-.,.-,? ,-. ..? -- ,i, ,% ;)) % .;,.;

36

imaginary perception of a user interfacing with a system. The objective is, of course, early

feedback into the design process so that adjustments may be made, or theories discarded.

Using Scenarios

Having seen how several authors propose to employ scenarios in software

development, we will in this section examine the use of scenarios in closer detail. First,

based on Wexelblat's paper, the construction of scenarios is explored. Then we will

examine an existing methodology employing scenarios and discuss the applicability of

scenarios in general.

Constructing scenarios

Wexelblat explores scenarios and their use in detail [We87]. He discusses what

information a scenario should contain, how it is constructed, and how it is organized. As

mentioned earlier, a scenario tells a story. Essentially, it is nothing more than a description

or a sequence of events used to explain something; instructional guides are a common

example. For our purposes, a scenario represents a provisional solution to a user's

problem.

Wexelblat describes a framework around which scenarios are constructed. With the

scenario, he suggests including a body of background information including the title,

author, date, version information, keywords and associated issues. Having this

information grouped together makes reviewing the scenario much easier. Also, some

structure is required if scenarios are to be maintained in groups. A benefit associated with

the keywords is adoption of a common vocabulary among the parties involved and an

accessible reference for outsiders. The issues involve capturing questions or implications

that the scenario might raise such as advantages, disadvantages, impacts, or further actions.

J6 .. Am

37

When writing scenarios, an important feature of scenarios is flexibility; they can

take on various forms such as text, pictures, or diagrams. Moreover, they can be

structured in various ways such as dialogs or narrative descriptions. Accordingly, scenario

authors should use the combination of form and structure that best suits their style of

writing and best conveys their points.

To effectively communicate the desired information, caution must be used in their

construction. To begin with, scenarios must contain the essential facts of the explanation,

presented at the proper level of detail. Wexelblat warns of presenting "black boxes" to

naive users in such a way as to solve a problem in a magical, unexplained way. Scenarios

written at too high a level of detail may miss features that the users need to envision

whereas too low of a level may force the user to sift through unimportant details. The

objective is to capture the essence of the solution.

A scenario-based methodolog-

In at least one case, scenarios have been incorporated into a software development

methodology. Mason and Carey describe a methodology employing screen-based

scenarios as the first phase in an evolutionary prototype [Ma82]. The basis for this

methodology is the architect's process where the system builder develops a view of the

product based on its external description. Once the external view is established, the system "

is developed inward, maintaining consistency with the external view.

The scenarios employed here represent a screen-oriented dialog between the user C,

and the system. This is accomplished using a predefined sequence of screens designed to

behave like the final system. But because there is no application logic, the user follows a

fixed script.

This methodology involves three iterative phases. The first of these involves the ',

development of scenarios based on sequences of fixed screens. This phase ceases when

agreement is reached on matters such as screen content and sequencing. The second phase

.C ...7 .' A .-

-* - ~t '
- S-' h . 5. - .* b. IN % V .7 V T.-

38

pays particular attention to the details of data-dependent calculations where partial

prototypes are developed to demonstrate actual database interactions and application

computations on limited samples. The third and final stage involves the development of a

prototype of the entire application which evolves to become the final system specification.

ACTI is the tool that supports this methodology. It allows the development of

individual screens simultaneously with the screen-linking logic associated with the data

entries in those screens. In effect, it handles the creation and maintenance of the screens as

well as the logic that controls their sequencing during scenario presentation.

Applicability of scenarios

How and when to use scenarios in requirements exploration are open questions

which we will now explore. As we will discover, based on their generality and their

associated cost of development, scenarios can perhaps be used most effectively in uncertain

situations, possibly as a precursor to implementation prototyping. It has also been

suggested that are best used to describe systems involving a high level of human interaction

[Ma82].

Scenarios versus Prototyping. When a designer has formulated a design that he

wants to communicate to a user, scenarios and prototypes both can provide the look and

feel of the final system. Choosing between them strongly relates to Davis' method for

selecting a requirements determination strategy based on a level of uncertainty [Da82]. In

this case, there is a tradeoff associated with prototypes and scenarios in terms of cost and

generality. The major factor in choosing between the two is the level uncertainty. The cost

is the amount of time and effort required to communicate and generality relates to the ability

to convey the system behavior in varying situations. The level of uncertainty is the risk that

the design (or component thereof) communicated is not what was wanted.

39

Certainly, an implemented prototype can be applied to more situations than a set of

scenarios. To see this, imagine of the number of scenarios required to thoroughly convey

the behavior of even a simple implemented application. On the other hand, to convey a

specific feature of a perceived system, an implemented prototype is very expensive when

compared to developing a single scenario. The deciding factor is the level of uncertainty

that what is communicated is what was wanted.

The level of uncertainty was described by Davis as being related to the experience

of the participants and stability of the proposed system. Consider the following situations.

* A designer draws on an applicable existing design, so he needs only to

demonstrate its use to the user. This corresponds to the deriving from an

existing system strategy. With it, the cost is low because the system already

exists. An existing system has the highest degree of generality, so the issue is

that of uncertainty, how close will it be to what the user wants?

" A designer is very certain that the requirements are fixed, and that he has a well

developed design model. He may simply develop the system in an

evolutionary prototype. Here, the level of uncertainty is perceived to be low,

the cost will be high, and the generality will be high.

" A designer is not so sure of the stability of the requirements, and/or the designer

does not have a well formulated model (a higher degree of uncertainty), he

may opt to describe specific features of the emerging design using scenarios.

The generality of the scenarios will certainly be limited, but so will the cost.

So it seems that scenarios, because of their low cost and limited expressiveness,

seem most appropriate for communicating specific system features in situations of high

uncertainty. Wexelblat points out in his conclusions that the high level of conversation

afforded by scenarios are most useful in cases where users only have a vague idea of what

they need, and the system does not appear to duplicate existing ones [We87].

!£

40

The type of system. Because scenarios capture the behavior of a system, they are

probably best used to uescribe systems involving a high degree of human-computer

interaction. Mason and Carey apply this characterization to Decision Support Systems

(DSS) and Interactive Information Systems (ISS) as well as most business applications

[Ma82]. However, meaningful scenarios could be constructed to convey more

processing-oriented systems.

Advantages and Drawbacks of Scenarios

Having explored scenarios and their use in some depth, we are now prepared to

describe their perceived advantages and drawbacks as a mode of communicating system

behavior in requirements exploration. Unfortunately, there has been little empirical

research on the use of scenarios in requirements exploration. Consequently, judging the

merits of scenarios is largely intuitive.

Advantages

As was suggested in the introduction to this section, the primary advantages of

scenarios involve their perceived ability to provide the early communication advantages of

implemented prototypes at a cost far lower than that associated with developing

implemented prototypes.

In terms of communication, scenarios have traditionally been a useful and

accessible explanatory medium and a natural way for people to describe how things

behave. Wexelblat describes scenarios as providing "a high-bandwidth communication

path between users and designers, even when the two groups never meet" [We87 p. 2].

When scenarios are used, users are not forced to learn the jargon of the designer or forced

to envision their system based solely on cryptic requirements documentation. Moreover,

scenarios are a flexible communication tool in that they may take various forms such as

41

narrative text, screens mock-ups, or slide shows: whatever effectively conveys the "look

and feel" of the system.

Associated with this idea of accessibility is the informality associated with

scenarios. This informality broadens the base of the users' contribution to the development

process since there is no particular expertise required for the employment of scenarios

[We87]. This alone could have a significant impact in that more of the actual end-users

could become actively involved in the design process as opposed to being represented by a

small group of designated representatives.

Furthermore, as with prototypes, scenarios can provide the focus for a valuable

learning process for both designer and user. Boland explored the effects of a structured

educatiun process between users and designers and found that it generated more

client-centered designs [Bo78]. Indeed, it is inevitable that the designer will have to learn

something about the application world. Wexelblat likened a scenario to a window to the

world of the customer: given enough windows, the designer can begin to anticipate the

users needs [We87]. Likewise, users can be more easily made aware of the restrictions

and tradeoffs associated with their needs.

Another potential benefit of scenarios is their usefulness throughout the

development effort. Scenarios could be valuable references for the design, testing and

maintenance of a system [We87, Ho82]. Additionally, scenarios could serve as training

aids for newcomers to development or end users of the system.

Finally and perhaps most importantly, scenarios avoid much of the overhead in

terms of time and effort of developing implemented prototypes. Wexelblat asserts that "it is

clear that the effort required to converse via scenarios will be more than repaid by

drastically lowering the cost of failed prototypes" [We87 p. 10].

42

Drawbacks

As we hav2, seen, scenarios lack the generality of an implemented prototype a!!d are

subject to a higher degree of interpretation on the part of the user. In levels of abstraction

(i.e., the degrees of interpretation), implemented prototypes are, by definition, identical to

the final system in critical respects, so subject to little interpretation. Scenarios on the other

hand require a higher degree of interpretation than do implemented prototypes, but much

less than traditional documentation. Additionally, scenarios must be developed to address a

specific situation or problem and therefore do not lend themselves to experimentation in

varying situations as do implemented prototypes. Another weakness of scenarios is due to

their flexibility and informality which preclude formal mechanisms for dealing with

completeness or inconsistency [We87].

An important additional concern is the perception of feasibility by the use:r.

Scenarios may be viewed as contrived by a more cynical user. Reacting to the fulfillment

of the promises made in an ambitious requirements specification, a subject in Boehm's

study noted that "words are cheap" [Bo84 p.299]. Indeed, there is nothing in a scenario

that assures feasibility as does an implemented prototype. Boehm noted that

implementation prototyping gave the development team an earlier and more realistic view of

what was feasible [Bo84]. Accordingly, Wexelblat warns that scenarios must must be

written to avoid a black-box that solves a problem in some unexplained manner [We87].

A final problem is that of deciding what to represent in a scenario. As we have

suggested, scenarios lack the generality of implemented prototypes; they apply only to

specific situations and illustrate specific features. This places a burden on the scenario's

author to accurately anticipate the important features and situations that must be

represented'.

1For a discussion of this issue, see [Ka88].

CHAPTER 3
A METHODLOGY FOR SCENARIO-BASED REQUIREMENTS EXPLORATION

(SBRE)

In the previous chapter, we explored the cognitive processes and current practices

involved in software development with respect to requirements exploration. This chapter

proposes a general methodology for scenario-based requirements exploration (SBRE). The

concepts and components of Lhis methodology have been synthesized from the background

study and are novel only in their integration into a requirements exploration methodology.

The chapter begins with an overview of objectives suggested by the material from

the last chapter. With these objectives in mind, we then propose a high-level conceptual

methodology for SBRE. To do so, a conceptual architecture of the information involved in

SBRE is presented, then the mechanics of the methodology are discussed with respect to

the architecture.

Objectives

As stated in the introduction, the objective of this research is to provide an effective

method for conducting requirements exploration based on the use of scenarios as a means

of communication between users and designers. Thus far, we have looked at the cognitive

processes and current practices associated with developing software. This material

suggests that to effectively accomplish requirements exploration, a methodology must have

several features. Based on the discussion of the cognitive processes, the methodology

should:

Facilitate the parallel development of a high level design and a set of

requirements regulated by a feedback mechanism [Am76, Ma8O, Sa87].

43

), a'"l

44

• Provide for the evaluation of provisional solutions by the user in order to

unr-over unstated requirements or clarify misunderstood requirements

[Ma8O, Sa87].

• Provide a structure that would ensure that attention is paid to all aspects of the

problem [Ma80].

, Employ an effective means of communication as a focus between users and

designers that would overcome the barriers of communication to some degree.

Furthermore, based on the discussion of current software development practices, a

methodology should:

* Appropriately emphasize the requirements definition process to ensure the

correct problem is being solved [Mc87].

• Provide the user with early and usable feedback in a form that conveys the "look

and feel" of the perceived system [Ho82].

* Provide for an explicit link between the system requirements ajnd the solutions

provided by the design [Mc87J.

• Accomplish requirements exploration at a reasonable cost [Ho82I.

With these objectives in mind, this chapter proposes a high-level conceptual

methodology for SBRE. It should be understood that the methodology is not a replacement

for the requirements and system design activities of software development, rather it seeks

to coordinate them to yield a more realistic set of requirements.

Conceptual Architecture

Figure 3-1 shows the components of the conceptual architecture supporting SBRE.

It is comprised of four sets of information that are captured and manipulated during the

process. We call these the goal set, the scenario set, the design set, and the issue set. In

our discussion, we will describe the information sets at a conceptual level to avoid issues of

45

representation. Consequently, the formality of the design and goal sets depend on the

techniques by which they are represented.

At any point during requirements exploration the architecture reflects the current

information relating to the system in question. More specifically, the goal set represents the

objectives of the system, the design set represents a plan (or plans) to meet the

requirements, and the scenario set will link the goal set and design sets by showing how

the design set achieves the goals. The issue set regulates the process by providing a

mechanism for recording and organizing the issues that arise in the requirements

exploration process.

As Figure 3-1 illustrates, the goal set is founded within the user's world and the

design set exists within the designers world. The communication between these worlds is

conducted via the scenario and issue sets. We will now discuss these sets in more detail.

User Designer

Scenario Set Design Set

Figure 3-1. High level view of SBRE architecture

The Goal Set

Simply put, the goal set contains the current definition of what a system must do

and within what means it must do it. This includes such information as requirements,

constraints, standards, and available resources. Also included is relevant background

material (i.e., general domain knowledge).

46

In the previously discussed models of design, the concept of the goal set is

described in various ways. In the cybernetic model of design, the goal set corresponds to

what Anikreutz calls the input information [Am76]. It is this information that determines

the feasibility of the design and provides the criteria with which to order alternative design

approaches. Sasso and McVay refer to this information as the constraints of the process

which delineate feasible designs and against which possible solutions are tested [Sa87].

Goal Set Scenario Set. .Design Set, . =

Cosaints IG Scenario 1 Design

Scenario 2 Model 1Goals '" Scenario ..N.....

Subgoal I.B Scearo-

•~~~.Scnri

Subgoal N

SuoalI.. Scbeai I.... Model 2
..

...~i .. ; i~ i ! ° ' - . c n r ° S e a i

Fise NssI plctins Asum tin

Satisfies -----
Determines .. e

,.r
Figure 3-2. Detailed architecture .

.u,.

Scenario.- N,.

... .~. ... Issue. Se

47

As illustrated in Figure 3-2, the goal set is represented as being a decomposition of

the problem into a set of subgoals. Indeed, the first step for attacking ill-structured

problems is to break them down into well-structured smaller ones [Si73]. Malhotra et al.

described the decomposition process as continuing until the subgoals are specific enough to

be considered as functional requirements [Ma80]. Moreover, Carroll et al. found that the

presentation of problem information was a factor in how well it was solved [Ca80]. They

found that a more hierarchially structured problem presentation results in solutions that

reflect the structure of the problem and more stable design protocols.

As expected, the initial requirements can be be very fuzzy. However, as they

evolve and become clearer, they should be recorded in such a way as to satisfy, as well as

possible, the characteristics of a good Software Requirements Specification (SRS). The

IEEE standards for requirements specifications [IE84] lists seven characteristics of a good

SRS. A good SRS is: (1) unambiguous, (2) complete, (3) verifiable, (4) consistent,

(5) modifiable, (6) traceable, and (7) usable during operations and maintenance.

Additionally, the requirements should be prioritized, particularly in novel situations where

the order in which the subgoals are attacked has a big impact on the ultimate solution

[Si73, Gu87].

The Design Set

As described in the objectives, a requirements exploration methodology should

support a parallel development of requirements and design. A design has been defined as a

model, a plan for a system to be realized [Am76]. As provisional designs are formulated

during requirements exploration, their distinctive attributes are recorded in the design set.

While the form and detail of the design set may vary, at a minimum, it serves as a

repository for the design decisions that will enable the construction of the envisioned

system.

10
• -,-.. ,,- -.- -,.- -.. ..- -.- -. - .-.- -.- .-. .-. .-.- -.- -.- -.. -.- -..- o-.-. -. .-.- - - -,,. -%- ,-%- . , , . ,,%,

48

The design set corresponds roughly to what Conklin et al. call the artifacts class

[Co85] and what Amkreutz calls the output information [Am76]. Both terms describe the

tangible output of the design process consisting of both content and organization. The

design set may also be compared to the design space of the Constraints and Assumptions

model [Sa87]. The design space is the area in which solutions are considered feasible (not

optimal) given the constraints recorded in the goal set.

Within the design set, there may be several alternative design models under

consideration as shown in Figure 3-2. A design model should convey all of the relevant

information that uniquely identifies a particular solution. These design models represent

various resource configurations and/or software design variations and represent different

approaches to achieving the goals.

The Scenario Set

The scenario set is the visualization of how the perceived system will accomplish

the objectives defined within the goal set. The objective of the scenario set is to convey to a

user what given features of a system would actually "be like" if implemented and capture

the "look and feel" of how the requirements in the goal set will be satisfied by the perceived

system. The scenario set serves as the focus for communication between the user and

designer.

In essence, the scenario set could be viewed as what Wexelblat calls a behavioral

specification in that it captures how the system reacts to its environment IWe87]. But more

than that, it can be used to convey the effective use of the perceived system within its

operating environment.

As shown in Figure 3-2, scenarios are explicitly linked to the goals they satisfy as

well as to the design model they represent. Moreover, because scenarios are dependent on

the design model they represent, they are grouped into subsets that have a one to one

J J16 % .15,2 .1 6 1; 1. -. -~ -d --~ - -. -. - - -" - - -.

49

relationship with the design models. A specific scenario can address many goals. As a

result, the scenarios effectively link features of the solution or design to specific goals.

The Issue set

As the name implies, the issue set contains the issues that arise and are resolved

during requirements exploration. The idea and need for the issue set was taken from

MCC's work on the upstream activities [Co88, Co86, We87]. The motivation for an

issue set is articulated by Wexelblat who notes: "the detailed design process that goes on in

the dialogue between designers and customers can be viewed as the iterative process of

discovering (or creating) issues and resolving them" [We87 p.1 11. In effect, the issue set

facilitates a feedback mechanism that supports the exchange and argument of viewpoints,

ideas, concerns, etc. of the participants involved in the design process.

Specifically, an issue can be thought of a specific problem or question relevant to

the project. Within the set are found four kinds of issues:

" Assumptions that are made by the designer in the face of perceived gaps in the

existing set of requirements.

" Responses are the users' recorded reactions to a proposed solution as portrayed

by a scenario.

* Implications are the constraints imposed on an overall solution and/or

requirements based on the adoption of a partial solution. These may be

thought of as "tradeoffs" associated with a particular solution component.

Implications may be internal or external.

External implications affect the requirements (usually involving a tradeoff in

desired capabilities). Accordingly, they must be reviewed and understood

by the user.

% -C o

50

Internal implications act as constraints affecting future design considerations,

they represent tradeoffs within the design model.

Notes are general pieces of information or questions that may be relevant later in

the requirements exploration process

These issues are linked to the specific aspect of the problem they address. For example,

responses will be linked to scenarios, implications linked to design models, and

assumptions linked to the appropriate level of the goal set. Notes can be associated with

any part of the model.

Process

Now that we have seen what information is captured and how it is organized, the

process of the methodology is presented using a data flow approach. It is based directly on

Malhotra's [Ma80] model of the design process reflecting a cycle of goal elaboration,

design generation, and design evaluation.

At a high level, the process employs a scenario generation/presentation cycle to take

an initial set of requirements and iteratively refine it at the same time a high-level design is

developed. More specifically, the design set, scenario set, and goal set are developed

concurrently as regulated by the issue set. The result of the process is an equilibrium

where the goal set accurately represents what the system is to do, the design set represents

a feasible plan to meet the requirements. At this point, the scenario set will continue to

serve as a focus for communication as well as a behavioral specification illustrating how the

requirements will be met.

Initial Goal Elaboration

The first phase in the process is the initial goal elaboration. As depicted in Figure

3-3, this is where the initial set of system goals are formulated during the initial interactions

L

51

with the user. At this point, information must be obtained in the more traditional ways

such as interviewing or synthesis from existing methods [Da82]. In addition to the

requirements and constraints, any relevant background information is captured such as

profiles of typical users or existing methods. When the goals have been elaborated and

decomposed to a point that the designer can begin to formulate an initial design model (or

models), the iterative scenario generation/presentation cycle begins.

Intial Goal
Elaboration

Designe !

Figure 3-3. The initial goal elaboration phase

Scenario Generation Phase

The scenario generation phase is the design part of the cycle. This phase

corresponds to the generation function in the cybernetic model of design [Am76] and

Malhotra's design generation process [Ma8O] in which a design is produced that

approaches the current goals as closely as possible.

As illustrated in Figure 3-4, as the designer formulates design models of how goals

can be met, the design considerations are recorded in the design set. Different design

models are developed based on varying configurations of resources and/or varying

processing algorithms. Based on the perceived behavior of these models, scenarios are

C W V

52

then developed that demonstrate how the design model will satisfy specific requirements.

With respect to the architecture, these scenarios complete a link between the design model

and the specific requirement. In effect, this link shows how a design model will satisfy a

particular goal.

Strategies for scenario development.

As was discussed in the previous chapter, scenarios are not as general as

implemented prototypes or existing systems. Consequently, using scenarios to

demonstrate all of the features or applications of an envisioned system is impractical. So

the question becomes, what features are demonstrated? This question involves exploring

the motivations for developing scenarios, which are based on the design strategy being

employed.

As discussed earlier, an important characteristic of a problem environment is the

level of uncertainty associated with it [Da82]. A high level of uncertainty is ascribed to

situations in which neither the designer nor the user has a well-defined model of the

requirements or solution. A situation such as this presents the designer with a wicked

problem and must be solved accordingly. More specifically, unfamiliar or uncertain

situations require a more reactive scenario generation strategy as opposed to familiar

situations which permit a enactive strategy.

A familiar design situation is characterized by a designer who brings to it an

applicable solution obtained either through experience or training. In a situation such as

this, the emphasis is on the optimization or selection of an existing solution. Here,

scenarios are formulated to allow (or force) the user to articulate essential system

characteristics or select between various options. This assumes that there are no existing

systems available to demonstrate, since it then would be easier to demonstrate the existing

system rather than generate scenarios. For these situations, an enactive strategy is

employed in that the impetus for the scenarios lies with the designer as he tries to constrain

53

the design space. Software development testing strategies are a good way to ensure that the

essential features of an existing model have been considered by the user [Ka881.

Alternatively, novel situations are those characterized by a high level of uncertainty

and correspond to wicked or ill-structured problems. Accordingly, the designer does not

have the experience or training to enter the problem with a well formulated design model.

As Guindon observed, a more bottom-up approach is employed by designers to deal with

unfamiliar situations [Gu87]. In such cases, the scenario generation process involves

formulating a design model rather than simply bounding an existing one. The scenario

strategy becomes reactive in the sense that the impetus for scenario generation lies with the

user's existing goal set.

Two approaches to uncertain situations can be effectively employed as design

strategies during scenario generation: the architect's process and serendipitous problem

solving. As described earlier, a serendipitous approach involves solving a problem by

moving between different levels of abstraction and detail and is driven primarily by the

recognition of partial solutions [Gu87]. Because the goal set represents the problem in a

hierarchial manner, the designer may first address the parts of the problem for which he is

able to formulate a solution. As these subsolutions are formulated and validated by the

user, they become the basis on which the rest of the problem is solved. The architect's

approach is similar in that the more well-defined subgoals are addressed and the resulting

interrelations of the subsolutions are incorporated into an overall design. Because merging

the subsolutions can lead to inconsistencies, internal implications are used to record the

constraints imposed on future design considerations by the adoption of a design

component. I-

'1

54

Issues generated during scenario generation

As noted in the discussion of the architecture, issues are problems or questions that

arise during requirements exploration. In the scenario generation phase, notes,

assumptions, and implications will be made in the following situations.

" In the absence of a perceived goal or constraint, the designer may make an

assumption which represents a proposed addition to the set of requirements.

This is recorded into the issue set and linked to the appropriate node of the

requirements hierarchy.

" If the adoption of a design model (or feature therein) entails a modification to

the existing requirements, an external implication is generated and linked to

the appropriate goal. External implications can be best thought of as tradeoffs

between functionality and feasibility.

" If the adoption of a design set component affects future design considerations,

an internal implication is generated and linked to the affected design model

within the design set. This is particularly important when employing a

bottom-up approach to ensure consistency in merging subsolutions.

Scenario Evaluation Phase

Upon formulating a set of scenarios and their associated issues, the scenario

evaluation phase of the cycle occurs. This phase acts as a feedback mechanism that

reconciles the development of the designer's high-level design (i.e., the design set) and the

user's requirements (i.e., the goal set). Scenario evaluation corresponds the feedback

function in Amkreutz' [Am76] cybernetic model, and the design evaluation phase of

Malhotra's [Ma80] model.

I Lll k":1

55

F Scenario
t s i eGeneration

a l so Scenario S et Design Set-1iiKIssue

Set
et k i =;

Figure 3-4. The scenario generation phase

In general, the scenario evaluation phase involves capturing the users responses to

the design set as represented in the scenario set and modifying the goal set accordingly.

This review of provisional solutions is the mechanism Malhotra found to uncover unstated
requirements (Ma80]. Similarly, Conklin et al. note that these unstated requirements are

traditionally called "mistakes" [Co85]. Complete scenario sets describing complete designs

are not necessary prerequisites to scenario evaluation. The initiation of this phase is at the
discretion of the designer and based on the criticality of the issues or scenarios to be

reidAs illustrated in Figure 3-5, the process entails a review by the user of a current setof scenarios along with any associated issues. The issues to be considered are any externalimplications and/or any assumptions that were generated by the designer during thescenario generation phase. The assumptions (i.e., perceived gaps in the requirements) are

reviewed for their inclusion into the goal set. Similarly, the external implications are

considered to review the effects on the goal set imposed by the adoption of a component

within the design set. The effect of external implications on the goal set may be in terms of

56

enhanced functionality afforded by the design, or alternatively, to restrict the goal set due to

problems with feasibility.

As the user reviews the scenarios, his questions or disagreements are recorded into

the issue set as responses. A response may indicate that a scenario does not address

features important to the user, in which case the scenario should be rewritten shifting its

emphasis or detail. Alternatively, a scenario may be unacceptable, thereby indicating an

unarticulated requirement or misunderstanding. In such a case, the user and designer

together reevaluate the goal set to determine what changes are required.

Using the modified goal set, the scenario generation phase is again started. The

cycle repeats until all subgoals have been addressed by user-approved scenarios that are

accurate representations of the behavior of the design.

Scen a r io

Eauation

User -,esignoer

....~*~*** ~ .*~.**.**..

4

Goa Set i Seario Set !i Design Set"

-Responses / mplications Assump t i o n s]I iiiiiiiii

Figure 3-5. The scenario presentation phase 1

I. ..

.........I
U - P

CHAPTER 4
TOWARDS AN SBRE TOOL

As we have seen, large-scale software design is a complex process of
concurrent activities. Today's design tools, however, are focused
primarily on one activity: the creation of artifacts that implement the
design solution. Rarely are any of the other activities - problem
formulation and solution identification and evaluation - supported.
[Co85 p.31

In the previous chapter an SBRE architecture and methodology was described. An

important feature of the SBRE architecture is the linking between the information sets.

Consequently, to support SBRE, a tool must aid in the maintenance of the information in

these sets ,C.' well as establish and maintain the relationships between them. As it turns out,

the power to do so is captured in a concept known as hypertext.

To support the methodology, this chapter describes the foundation for a

hypertext-based tool that has been implemented using Apple's HyperCardmt . We begin by

looking at hypertext in general and then examine the concept and capabilities of Apple's

HyperCard system. Finally, we consider how the SBRE architecture is constructed in

HyperCard. Appendix B contains a more detailed description of the implementation.

!

Overview of Hypertext

In his survey of hypertext systems, Conklin [Co87] points out that most of today's

computer systems process information in a linear fashion, hypertext systems on the other N

hand make extensive use of referential links to support nonlinear text. Two examples of

what could be called manual hypertext systems are the use of reference books and note

57

4,

58

taking on 3x5 index cards. In both cases, embedded within the information they contain

are references to other material, either to other note cards or other volumes.

Ted Nelson, one of the pioneers of hypertext, defined hypertext as "a combination

of natural language text with the computer's capacity for interactive branching, or dynamic

display... of a nonlinear text... which cannot be printed conveniently on a conventional

page" [Co87 p.17]. Conklin explains: "the concept behind hypertext is quite simple

Windows on the screen are associated with objects in a database, and links are provided

between these objects, both graphically (as labelled tokens) and in the database (as

pointers)" [Co87 p.171. Figure 4-1 is an illustration of the relationship between windows

and links in the display, and the nodes and links in the hypertext system. In this example,

the link "b" has been activated in window A (using a pointing device such as a mouse). As

a result, the new window B has been created on the screen, containing text from node B in

the hypertext database.

Machine supported links are the essential feature of hypertext systems [Co87].

This capability makes hypertext very similar in some respects to semantic networks and

relational databases. However, Conklin points out that these schemes "lack the single

coherent interface to the database which is the hallmark of hypertext" [Co87 p. 18]. To

further illustrate the concept of hypertext, Conklin lists the characteristic features of a

hypertext system:

- A database that is a network of textual or graphical nodes.

* Windows on the computer screen correspond to nodes in the database.

* Standard window operations are supported.

- Windows contain link icons which represent pointers to other nodes in the

database. These link icons provide some indication of the contents of the

node it points to.

* The easy creation of nodes and links.

'. %

59

The database can be browsed in three ways: (1) .ollowing links,

(2) searching the network for strings or attribute values, or (3) navigating the

network using a graphical browser which provides visual clues to the content

of a node.

According to Conklin, hypertext has to this point been applied in four general

application areas: (1) macro literary systems which support large on-line libraries with

interdocument links, (2) problem exploration tools which support the early unstructured

thinking associated with problem solving and design, (3) browsing systems which are

similar, but smaller in scale than macro literary systems, and (4) general hypertext

technology which are general purpose systems allowing the application of hypertext to a

range of applications such as writing, reading and collaboration.

=b R B

--- --- ---I I _ _ _

.Hypertext I
*Database

L--..........-..................--- - -CFigure 4-1. Hypertext relationships (C 7 p. ::18:
,:::::::: : : :: :::)::: : :: : ::: : ::::::: :::::: ::< : :: ::: : :::):: :): ::: ::...H o r txC: :

:::' " ":': :" "' '::::::" '': :'''' ''+ ''': : '"'' ""':'':: . .. :''+ :''::''''': : : ::''''+'e : ::

~ iiiii;:i! i! ~i~~~! !i A ~!; ~iii! ;!i~l~i!!iiiii!!i~ iii e!:,

G)i::i ::[::[~ ~i::::::::: + :[:: :: :i: : :i:) : : :[[[:: :[: .i: i .. :i : ::[: :i: [::: :i) [: [!
:~~~~~ Diiiiii ; ;{~{{{~ {{{{ii {~{{{i{{{{{~~~{{{{ii!i ii{:ii[i# i{ ~~i[ii[[i:{ ~i<[[[[

::;: : : : :: :g :: i![]i[:~::: : iiiii :::: :: :''': :"i! :::: : : : :::F: : : : : :
:: i) {i :) : :: !i;:::: !! ' ;ii !!:[ii C ! i i i:ii: :i: E ;

Figure 4-I1. Hypertext relationships [Co87 p. 181

60

The problem exploration tools in general are very applicable to the SBRE

methodology. These tools provide the required mechanisms for organizing, browsing, and

filtering through a large collection of relatively unstructured information. More

specifically, one subset of these tools, Issue-Based Information Systems (IBIS) support

the human interactions required to approach wicked problems. The concept of an issue

base was incorporated into the SBRE methodology.

Apple's HvperCard M

HyperCard is a hypertext system developed by Apple Computer, Inc. It is

currently bundied with, and runs on, Apple Macintosh personal computers. Goodman

notes that, "the [HyperCard] program is largely a metaphor for collections of information

stored on cards, much like a card catalog at a library" [Go87 p.19]. HyperCard's author,

Bill Atkinson, describes it as "an authoring tool and an information organizer. You can use

it to create stacks of information to share with other people... it's both an authoring tool

and sort of cassette player for information" [Go87 p.xxi].

The basic building blocks of HyperCard applications are stacks, cards, fields and
I,e

buttons. The basic block, the stack, is usually a homogeneous collection of information

similar to a drawer of a card catalog. The Macintosh operating system treats stacks as files.

The HyperCard stacks are composed of cards. These cards represent the nodes of the
..

hypertext database described previously. Using Goodman's analogy, a card in HyperCard

corresponds to the card you would pull out in a card catalog drawer which typically

contains one piece of information related to the content of the entire drawer. Unlike the

windowing capabilities in Conklin's description, only one card is displayed at a time in

HyperCard. Text associated with a card can be entered into fields, which usually contain

61

the information that varies between cards. By using what is called a scrolling field, a

card's boundaries can be extended for entering and displaying text.

Also located on a card are buttons which can be referential links to other cards or

stacks. In this respect, they serve as navigational tools for traversing the HyperCard

application. Although there is no real world analogy for buttons, if a card in a card catalog

referred to a card in another drawer, using a button would automatically open the other

drawer and find the card for you. Buttons are activated by clicking the mouse as the pointer

points to the button's area of the card. As a result, the targeted card appears on the screen.

An important and powerful feature of HyperCard is its high-level processing

language, HyperTalk. HyperTalk commands can be used interactively from the keyboard,

or organized into scripts which are associated with any of the HyperCard objects. For

example, the linking function performed by buttons is due to predefined HyperTalk scripts

associated with the buttons. A script is activated by an event such as a mouse click that acts

on the object with which it is associated. In addition to navigating through the applicatior,

HyperTalk commands can be used to create, delete and modify any of the HyperCard

objects (stacks, cards, fields, or buttons) or their contents.

SBRE in HyperCard

Having discussed HyperCard's capabilities, we will now see how they can be

applied to support the SBRE methodology. Figure 4-2 illustrates the SBRE architecture as

it can be represented in HyperCard. In it, the SBRE information is represented in the five

HyperCard stacks; (1) goal decomposition, (2) constraints, (3) scenario subset,

(4) design model, and (5) issues. There could certainly be others, but these represent a

minimum necessary to support the SBRE methodology. The arrows represent the links

between the stacks and/or the cards. We will now discuss the sets individually.

• 'S

I

62

The oal set.

As described in the last chapter, the SBRE goal set must minimally contain the

system goals decomposed into subgoals to the point where they can be considered

functional requirements. This goal hierarchy is maintained in the goal decomposition

stack. To support this hierarchy in HyperCard, an arrangement of links as illustrated in

JFigure 4-3 would provide a simple hierarchic structure.

Goal Set Scenario Set Design Set

* Constraint

- ConstraintsI • 1 End Scenario
',

G oal D esign
Description eatureScenario e

Goal Scenario 4 - Design
Decomposition'- i Issue Se!.

E xternal R e p n eI ternal
Assumption Implication Implication

Issues
-- I

Figure 4-2. The SBRE Architecture in HyperCard

The goal decomposition stack is made up of goal description cards which contain

three fields. One contains a short title describing the goal represented, a second contains

the text description of the goal, and a third contal- a list of the titles of any supporting

goals. The supporting goals would be associated with a button linked to their description

0 ;2

63

card as shown in Figure 4-3. Additionally, as illustrated in Figure 4-2, there may be

buttons linking the goal description to constraints, scenarios or issues.

Goal

Description " Superordinate
Goal Goal

SGoal Sugas Description

Description 0

Figure 4-3. Hierarchy of Goal Description cards

Descriptions of the constraints would be maintained in the Constraints stack. A

constraints description card would contain fields for a title and a complete description of the

constraint. They are linked with the appropriate goal description card. This allows the

constraints to be associated with the appropriate level of requirements. For example, the

total time available for a project would be associated with the root goal description of the

goal hierarchy. Other stacks could optionally be used to record other relevant domain

information.

The design set

The design set must represent the design considerations for the different design

models under consideration. Accordingly, each model would occupy a separate design

model stack linked to its representative set of scenarios. The design set need only be

visible to the designer, so the format of the stacks is subject to the design methodology

used. For instance, in a data-oriented design scheme, individual cards could represent data

entities that could be linked to represent their structure in a database. Additionally, cards

",'',, ,,- ,¢r ,.,., , _ ,, .. . ,.,,. - , .,.- .,. , -.--..... -....... ..

i..

64

representing different resources (i.e. people, hardware, or building space) configurations

would be stored in the Design Model stack.

The scenario set

As shown in Figure 4-2, the scenario set consists of scenario subset stacks that

have a one-to-one relationship with the Design Model stacks in the design set.

Accordingly, all of the cards in the scenario stacks have buttons pointing to the design

model stack. A simple way of constructing and storing scenarios would be as a sequential

set of cards sandwiched between a begin scenario card and an end scenario card as shown

in Figure 4-3.

lV

EndScenario,.

Scenario

Begin I d

Scenario

Figure 4-4. Scenario Organization

The begin scenario card would serve as an entry point for any links to the scenario.

Additionally, this card could contain background information similar to that described by

Wexelblat including the author, date, version and any keywords as well buttons to link the

scenario with the goal description card(s) that it satisfies (illustrated in Figure 4-2.) The

body of a scenario is simply a sequential set of one or more cards. Accordingly, they are

traversed in sequential order from the begin card. Isolating the scenario body from the

begin and end cards allows scenarios to be created without the overhead associated with

maintaining the SBRE process. The end scenario card would serve to delineate the end of

'

65

the scenario and contain the buttons with which to establish response issues. This above

representation would work for completely independent scenarios. It certainly is possible

however to interrelate scenarios in some sort of hierarchy of detail. Such a scheme is a

natural application of a hypertext system.

The issue set

The issue set as illustrated in Fig 4-2 consists of a different type of card for each

type of issue (this could be done simply using different card names.) The cards all have a

title field as well as a scrolling field for the textual description of the issue. Also included is

the button linking the issue to the description card containing the information in question.

It has been said that a record of the design decisions and their rationale would be

useful in that it would provide a mechanism to backtrack and "unmask" the cause of

mistakes [Co85]. The issue set as implemented in HyperCard could optionally satisfy this

function through the use of an archive stack. This stack would simply be a repository of

resolved issue description cards. As an issue is resolved, the card is transferred from the

Issues stack to the archive stack and annotated with the date and a description of the

disposition of the issue. In so doing, a history of the SBRE process would be maintained.

Functionality

Having detailed how an SBRE architecture could be formulated using HyperCard,

we are prepared to discuss the high-level functionality of a SBRE tool in HyperCard. At a
p

minimum, such a system should initially create, and support the expansion of the SBRE

information sets. Additionally, to supplement the limited browsing capabilities of

HyperCard, the tool must provide indexing capabilities to easily access the stacks.

10

-, ;

I. .

% .. ",,, ,',"-- - . ,.- . '. " , -,. _- • . - ,-_. % --- .* , - ' . s ,,._ - . "% ' . "_ -e . - - . -. ' ',.. - _. -

66

Implementing an SBRE architecture

The primary function of an SBRE tool would be to create and maintain the SBRE

information sets. The it must provide the framework into which the information will be

entered by the designer and user. Initially, this will require that the goal decomposition

stack be created with a root goal description card. Also, an empty design model stack

would be established. As the design and scenario sets are generated, the tool must generate

the new cards and maintain the links between them. Because issues will be formulated

outside of the issues stack, a mechanism should be provided so that an issue card can be

created from within any other stack and automatically be linked to the card from which it

was created.

Browsing the SBRE stacks

In the general introduction to hypertext was described a browsing capability using

icons that represented the nodes in the hypertext database. While HyperCard provides the

means for sequential browsing and reviewing recent cards, to efficiently browse

HyperCard stacks, additional facilities must be built into the tool to provide indexes and

overviews of the information contained in the system. This can be done by building

separate system index cards that would build a list of card titles and buttons linked with

their description cards. To do so, the index card would contain a HyperTalk script that

would make a pass through the stack and compile a list all of the card titles, location, and

the presence of links.

Creating Scenarios

Using the structure suggested in the previous section, the body of a scenario is

simply a sequential set of one or more cards used to illustrate an aspect of the proposed

system's behavior. HyperCard offers a great deal of power for creating scenarios,

enabling a range of sophistication from simple textual narratives stored in fields to full

67

featured simulations involving cards that represent CRT displays, fields that accept and

process user input, and HyperTalk scripts to mimic the system's behavior.

Summary

This chapter described the considerations for employing a hypertext-based tool to

support the SBRE methodology. We began by discussing the concept of hypertext and

how it applied to the SBRE architecture. We then examined the capabilities and features of

Apple's hypertext system, HyperCard, and finally, described how the SBRE architecture

can be represented in such a system. Appendix B details an implemented prototype of such

a tool, and in the next chapter, we will describe some initial reactions to its use.

1A
',.' ' '. ", ', -".-' ,", .a', 2' .'..a,.¢ _.r

'r
. , .. ,. % ..€ ,' .. " . . ',-' '-vc. . is

CHAPTER 5
SUMMARY AND CONCLUSIONS

Conclusions -- Assessment of Objectives

In the first section of Chapter 3, we outlined several features that should be

incorporated into a requirements exploration methodology. We will now review these and

describe how they are reflected in the SBRE methodology.

• Support the parallel development of both a high level design and a realistic set

of requirements regiulated by a feedback mechanism. The inclusion of both

the design and goal sets in the SBRE architecture provides the framework to

support these processes in parallel. The scenario evaluation phase in the

SBRE process and the issue set in the architecture together provide a feedback

mechanism regulating the design and requirements development processes.

" Promote the evaluation of provisional solutions by the user in order to uncover

unstated requirements or clarify misunderstood requirements. Malhotra found

that discussions between users and designers about how designs meet goals

uncover new or unstated goals. This is the motivating force behind the

scenario evaluation phase where scenarios representing the design are

evaluated by the user so that the goal set may be adjusted accordingly.

" Provide a structure that would ensure that attention is paid to all aspects of the

problem. The first step in dealing with complex problems is to decompose

them into smaller and more manageable subproblems. However, there is a

tendency to neglect subproblems when formulating a design. Providing

explicit links to the goals as they are satisfied by scenarios will identify goals

68

-a - n-4sj'.'*Vs).

69

that have not been addressed. A supporting tool should highlight such

situations.

* Employ a means of communication between users and designers that would, to

some degree. prevent the induction of noise into the communication process.

This objective is satisfied by using scenarios as a means of communication.

Since scenarios are flexible, they may be written at a level of detail that

captures the essence of the solution without overloading the users with detail.

Furthermore, design jargon is reduced because scenarios are written in the

language of the user.

* Provide the user with early and usable feedback that provides the "look and

feel" of the perceived system. This objective is achieved by the use of

scenarios, which we have shown to be a fast and powerful means for

communicating a system's behavior. Additionally, the process ensures that

feedback is provided to the user before any resources are spent on an

implementation.

* Provide for an explicit link between the requirements and the solutions provided

by the design [Mc87]. The linking mechanism in the SBRE architecture

explicitly associates design functions to specific requirements through the

scenarios.

* Accomplish requirements exploration at a reasonable cost [Ho82]. Currently,

implementation prototyping is the most effective way for a user to evaluate the

suitability of a design. Unfortunately, this is a costly way to perform

requirements exploration, especially in situations involving a high degree of

uncertainty. Hooper rightly argues that the cost of developing scenarios is

very low when compared to the cost of failed or inappropriate prototypes

[Ho82].

70

To summarize, the SBRE methodology should prove to be a fast and effective way

to elicit requirements. There are however some open issues associated with this approach

which we will now discuss.

Future Research and Open Issues

Scenario selection

Throughout this thesis, we have taken a rather simplistic view of representing a

system's behavior with scenarios. An important issue concerns identifying which facets of

a design to represent and to what level of detail.

To effectively represent the design's behavior, the scenarios used must adequately

"cover" the requirements in the goal set. It has been found that many of the coverage

strategies used in software testing are directly applicable to requirements exploration

[Ka88]. Particularly applicable are black-box testing strategies, which are based solely on

the specified requirements. Two examples of black-box testing strategies are equivalence

partitioning and cause-effect graphing.

Equivalence partitioning involves partitioning the input space of a program in such a

way that an element of a given partition will be handled by the program in exactly the same

way as any other element in that partition. With respect to scenarios, overall coverage is

achieved when each partition of each input is covered by at least one scenario.

Cause-effect graphing differs from equivalence partitioning mainly in the level of

coverage provided. Coverage with cause-effect graphing is achieved when every valid

combination of input partitions, or causes, is covered. A cause is essentially an input

partition while an effect is some system-level outcome. The requirements are used to

develop a boolean graph which reflects the logical relationships between the causes and

effects. By starting at a given effect and working backwards through the graph, every

71

combination of causes leading to that effect can be identified and covered by a separate

scenario.

Strategies may also be employed for purposes other than simply "covering" the

design. It has been found that many of the knowledge acquisition strategies utilized in

expert system development are directly applicable to requirements exploration [Ka88].

These techniques may be used to develop scenarios that selectively focus a user's attention

on specific questions or problems.

Additionally, scenarios can be developed to demonstrate the best use of a system

within the user's environment. As we have said, an implemented prototype can be very

general in that it can be applied as the user sees fit. Unfortunately, thc. user may not have

the insight required to best apply a system. Scenarios offer a way of illustrating the

system's functionality and its optimal use.

As noted earlier in the thesis, scenarios illustrate specific features of a system for

specific situations. As a result, it is infeasible to try to cover all features of a system for all

possible situations. Therefore, the scenario set should be developed to convey the behavior

of a design which is of interest to the user, while at the same time making the user aware of

any inconsistencies in the requirements.

Relationship of SBRE to software development methodologies

Another open issue involves the disposition of the information contained in the

architecture after the SBRE process. To a large degree, this will be determined by the level

of detail of the information. If the SBRE process is conducted rigorously, and the

uncertainty associated with the goal set is minimal, the SBRE methodology can serve as a

precursor to the traditional software development methodology. In this case, the goal set a'

would serve as a requirements specification, and the design set would serve as a design v

specification. Alternatively, if the process is conducted less rigorously, or there is still

significant uncertainty associated with the requirements, the SBRE methodology could

.. '..-- !i

72

serve as a precursor to prototyping. Also, as suggested by Wexelblat [We87] and Hooper

[Ho82], the scenario set may be used later in the development process as a guiding

framework for implementation and testing of the system.

Development of a supporting tool

A prototype tool (described in Appendix B) has been developed to support the

SBRE methodology and is currently undergoing an initial shakedown study. It is being

used to explore the requirements for a process-oriented application involving a high degree

of uncertainty. The participants are three graduate students, two serving as designers, and

one as a user. The initial findings have been encouraging. The goal set changed

considerably based on the reactions to scenarios and the issues generated. Not
surprisingly, the designers felt that constructing scenarios forced them to focus more

closely on the user's requirements and be more thorough in the design process than would

have been the case otherwise.

Gaining a body of experience

Devising a way to evaluate the effectiveness of the SBRE methodology will be very

difficult. How can one measure the ability of a particular methodology to uncover

requirements? Perhaps the best way to evaluate the methodology, as well as address the

issues above, is to develop a body of experience by applying it to a variety of realistic

problems. In so doing, the following issues must be addressed:
With respect to the overall methodology:

Define the types of problems for which the SBRE methodology is most

effective. This can be characterized in terms of uncertainty and problem

domain.

-%

73

* Assess the acceptance of the methodology by users. Does the SBRE process

have to be "sold"? Do users really understand what is being expressed in

scenarios? Do the users tire of the process?

• Identify problems in managing the SBRE process. Determine the cost

effectiveness of using SBRE. Develop guidelines for scenario selection

criteria. Determine the compatibility of the SBRE process with established

software development methodologies.

* Explore the compatibility issues involved with using various specification

representations.

With respect to the tool:

• Explore the possibility of providing scenarios to users to be reviewed in the

user's environment without designer assistance.

• Investigate provisions to support multiple users.

° Evaluate the suitability of the tool for various specification representations.

Summary

In Chapter 1 we established a need for research in, and improvements to, the

requirements exploration process. This was done by identifying a causal link between

inadequate requirements and what is known as the software problem. Furthermore, we

described our intent to develop an effective method for requirements exploration based on

the use of scenarios as a basis for communication between user and designer.

In Chapter 2, we presented related background material. We explored the cognitive

processes involved in requirements exploration including communication, problem solving

and design. Additionally, methods of software development were surveyed and a means

for selecting a requirements determination strategy was presented. Finally, we examined

scenarios as they apply to requirements specification.

74

From this chapter, some important conclusions were drawn. First, design

problems are usually wicked problems, the solutions of which must be judged by criteria

developed in parallel with the solutions [Co85]. Second, the design process involves the

iterative and concurrent development of requirements and design [Ma80, Am76, Sa87].

Third, exploring solutions to problems uncovers unstated requirements [Ma80]. Fourth,

scenarios offer a fast, effective, and inexpensive way to describe the behavior of a

hypothetical system [Ho82, We87]. Fifth, it is important to provide users with early and

useful feedback on how their requirements have been interpreted and how they are being

met.

Based on the above obscr,.,ations, Cliapter 3 proposed the architecture and process

of an SBRE methodology. The first section described a conceptual architecture consisting

of four sets of information captured and manipulated during requirements exploration: the

goal set, the design set, the scenario set, and the issue set. The second section described

the SBRE process as the formulation and refinement of these information sets using an

iterative cycle of scenario generation and evaluation. The process stops when no open

issues remain in the issues set. At that point, the goal set represents what must be done,

the design set describes the plan for doing what must be done, and the scenario set

describes how the system will behave when implemented. Appendix A provides a

hypothetical example of SBRE use.

Chapter 4 examined considerations for developing a tool to support the SBRE

process. Also, the features of a commercial hypertext system, HyperCardTM , were

outlined. Based on its structure, we then described how the SBRE architecture could be

represented. Appendix B provides a more detailed description of a prototype tool based on

this platform.

Finally, in this Chapter we have concluded that the SBRE methodology should

provide an effective way to explore requirements. However, we also have identified the

need to develop a body of experience to validate this conclusion.

7 '; '. ' ' ,' ''. 2'2 . 'W,'I ?,,"'.2.' " , . '¢2.'2,g,' " . "" ' ". ". ","" "'¢," "" ." "-'2.'2, &'..'. € "" .

APPENDIX A
THE LIBRARY SYSTEM -- A SCENARIO ILLUSTRATING SBRE

The "small library database" is a common demonstration problem for specification

work [We87]. Here, the mechanics of the SBRE methodology are illustrated using a

hypothetical library problem. The example encompasses a single iteration of the scenario

generation/evaluation cycle.

Initial goal formulation
S N,

During the initial goal elaboration phase, through a set of interviews with the user,

the following initial set of requirements and background material was obtained and

recorded into the goal set.

System description -- School Library System

Hierarchy of tasks:

1. Maintain Loans

a Check out

b Return books

2. On-line card catalogues

a Query by author, subject, or title

b Indicate availability or due date

3. Maintain book inventory

Constraints:

1. All copies in the library either available or checked out.

75

76

2. No books may be loaned to borrowers with delinquent loans.

System users and privileges

1. library staff - access to all functions

2. library assistants - access to check-out and return functions

3. students - access to on-line card catalogue

Data currently maintained manually:

1. user information - name, address, phone number, social security number.

2. book information - call number, title, author, type of publication, date,

publisher.

3. overdue list - overdue loans listed by borrower, title and date due

Scenario generation

Based on the current information captured in the goal set, the designer formulates

two design models. Both would use an on-line database comprisci of the information
d,.

now contained in the manual system. The difference is that one model, in addition to
.J.

CRTs, would use scanners to read barcodes encoded on the volumes and library cards.

These configurations of hardware are captured along with the database concept in the K"

design set. To illustrate how requirement l.a (Check out books) is to be satisfied by the

two design models, the designer develops the following scenarios:

BEGIN SCENARIO: Checkout Using Scanner

" A borrower arrives at the assistance desk with some books to be checked out.

" The library assistant asks the borrower for a picture ID and his library card

containing the user's barcode.

SThe assistant scans the card with the scanner and the following screen appears on the
t i

terminal:!

[, ,-

i'K-

.9 * . - '..: K -K *K

'. , "" ' '' - .- "a" , .*", "- "- ," ", ", .. " .>- ." " -- ',. .
",

' ' . ,-' , , ,' -"...,- V K-,9 -. .. -,*-. ,--%9 K,,

77

Borrower Info

Name, John Doe

SS Number: 112-09-4444

Address* 101 Bozo Lane
FNiceville, F.23111

Phone:i301-2345

Restrictions,'.. None

Loan? (Y/N)

The assistant checks the screen to see if there are any restrictions to the borrower's

privileges. If not, the assistant enters a "Y" into the "Loan?" prompt, and scans the

book's barcode, producing the following screen:

Loan Transaction
Borrower: John Doe

T itle: Clowns of theNe
World

~Call No. 0301 .n55 198

Due Date: 8-12-88

The assistant checks the information, stamps the book with the due date, and enters

"Y" at the "OK?" prompt. At this point, the system records the loan and updates the

information on the availability of the book.

END SCENARIO

BEGIN SCENARIO: Checkout Without Scanner

• A borrower arrives at the assistance desk with a book to be checked out.

;, - K -" - --"," *. - -"." . -."-" - - -" --" -" "- -- "---. -. .- '" ".'" -" -"--"- - -" -" ,""

78

* The library assistant asks the borrower for his/her student id which contains the

borrower's social security number.

The assistant enters the social security number into the following screen:

PleseenerSS Number:

• The assistant checks the response to see if the borrower's privileges are restricted for

any reason. If not, the book's call number is entered on the screen:

* Loan Transaction

Please enter SS Number: 112-09-4444

Name: John Doe
Restrictions: None

Please enter Call No.__________

After the call number is entered, the book's title and the due date for the loan are

displayed on the screen:

5,

• n- | -.-

79

"qh,
Loan Transaction [.:

esPlease enter SS Number: 1 12 -0 9-4444

Name: John Doe
:..:.Restrictions: None'

Please enter Call No,% Q301 n55

it: Clowns of thNeWol

Due Date,: 8-12-88

The assistant enters a "Y" at the "OK?" prompt and at that point, the volume is on

loan to the borrower.

END SCENARIO

As he ponders the design and generates the scenarios, the designer realizes that the
current manual library system maintains information for the borrower, but no provision

for doing so exists in the current requirements. Consequently, he generates an

assumption stating that a requirement needs to be added to this effect.

Also he realizes that the use of a scanner would require borrowers to have special

barcoded library cards and all of the books to be labeled with barcodes. This is recorded

in the issue set as an external implication since it entails a change to the existing goal set

driven by the adoption of a component of a design model.

Scenario evaluation

After generating the scenarios and recording the issues, the designer decides that

before going any further, it would be a good idea to see if the scanner-based design model

is worth pursuing from the user's point of view. Going into the scenario evaluation

phase, the SBRE architecture is as shown in Figure A-1. There are two design models
U-

U-

80

differing only in that one model includes a scanner and the other does not. Based on these

models, there are two subsets of scenarios, each containing a scenario illustrating the

check-out procedure. Also there exist two issues for review, the assumption that

information on the users must be maintained, and the external implication of adding

barcodes to the books to support the use of scanners.

Goal Set =Scenario Set]D InSe iii:

= = S u toals.et..

Maintain Loans Checkout Without - Database, CRTs,
Check out r4 Scanner no Scanner
Return

On-Line catalogues'-

queries""Sbe queres ', 2Database, CRTs

availability
Maintain Inventory Checkout with

Scanner
pl o

....... .!! I .. -5i

i . iiiiii~iil Req u res oarco e a abels I i
Maintain User Information

Reuires barcoded cards

S a t is f ie s - - - -

Determines
,

Figure A-. Architecture entering scenario evaluation phase.

During the scenario evaluation phase, the designer presents the assumption

concerning the maintenance of user information. The user acknowledges this omission

explaining that currently, the student's ID card, which is issued by the school, is used.

I .co c rn n the ma n e a c f u eIno m to . Th s ra k o l d e h s o i so

81

Accordingly, a new requirement is added providing for the maintenance of user

information within the library, and the assumption is removed as an open issue.

At this point, the two scenarios are reviewed. The first scenario, "Checkout Using

Scanner", is reviewed along with its associated implications. The user is impressed with

the speed at which checkout can be done with the scanner. However, as he reviews the

associated implications, he realizes that using the scanner entails adding barcodes to all of

the volumes in the library, as well as issuing library cards, which was something he

hoped could be avoided.

After the second scenario, "Checkout Without Scanner" is reviewed, the user says

he realizes that the scanner version would save his staff a lot of time and would speed up

the checkout process considerably. However, he does want to know how a due date is K

being calculated and how would the system handle holidays and weekends. His reactions

and questions are recorded as responses in the issue set.

After the responses are recorded, the user and designer together review the goal set p

with respect to the responses. They modify the goal set to accommodate the use of the

scanners by adding the requirement that the books will be affixed with barcodes and the

students will oe issued barcoded library cards. During the discussion of the due date, the

designer explains that his design calls for a fixed period of time to be added to the current

date and adjusted for holidays using a standard calendar routine. The user responds that

seniors can check out books for longer than underclassmen. The designer points out that

there is no status or class field and that this needs to be added to the user information. As

a result, a status field is added to the student information.

As a result of this cycle of the scenario generation and evaluation phase, the goals I

have changed significantly. The resulting architecture is shown in Figure A-2. From this

point, the designer now has a revised goal set with which to begin another iteration of the

scenario generation phase. The cycle would repeat until the user is satisfied that the

scenarios represent an acceptable system for his needs.

I

82

Goal Set ...:.. Scenario Set D Des ig n Set
I .'. .$*f~ ..0

GoalSue
Maintain LoansI

Statusaase basd ues,

Chc owt are Chueou daesthuout 1lk h te n et

RetDeterminer

Figure~~~~~~~~~~~~~ A. Arhtetr afe.frtscnri.eertoneauain.yl

Stats b sed ue~ :*X...

......

..

APPENDIX B
DETAIL OF THE GOAL DECOMPOSITION STACK

In this Appendix, we explore in some detail the goal decomposition stack described

in Chapter four as it has been implemented in a prototype SBRE tool. To do so, we will

look at all of the components (i.e., cards, fields, buttons, and scripts) that make up the

stack. The arrangement of, and functions performed within, this stack are very

representative of the those throughout the system. To develop an in-depth understanding

of HyperCard, Goodman's book should be reviewed [Go87].

As described in Chapter Four, the goal decomposition stack is made up of goal

description cards on which the goals for the system are recorded and maintained. The

buttons on the card allow for the creation of a hierarchic structure of goals their subgoals.

We will first explore this card. We then will look at an overview card which is unique

within the stack. Its function is to compile and display an overview of the cards within the

stack, formatted to represent the hierarchy. From this card, any card in the stack may be

reached using a button.

The Goal Description Card

Illustrated in Figure B-I is the Goal Description card which makes up the goal

hierarchy. The card is used to record and maintain the detailed description of a particular

goal. Additionally, it displays the subgoals that directly support the goal described. This

card is typical of the ones storing information throughout the SBRE system. The main

characteristics for such a card are a description title for indexing purposes, and a detailed

83

-. 4 - t- .t .A. .

84

description in a scrolling field. We will now take a closer look at the components that make

up this card.

There are fourteen fields associated with the goal description card, eight of which

are hidden and two of which are scrolling. Within these fields are the information that

distinguishes the card from any other in the stack. Scrolling fields are used to record

varying amouts of information that may not fit completely on the card. Hidden fields

contain information associated with the card that remains hidden from view. Additionally,

fields can be implemented as arrays by using the lines of the field as an index.

i File Edit Go Tools Objects

Creturn) inde) Author: Fhbh Date:W
Goal Description

Title: library overview priority:

A high-school library system. - Develop an information system to replace the
manual system.

Data currently mai ntai ned -
user information - name, address, phone, social security number
book information - call number, title, author, type of publication, date, publisher
loan card - student, book call number, due date

Subgoals: maintain inventory
support loans
Provide an on-line card catalog

Sissue) .

scenario.
(constraint

Figure B-1. The Goal Description Card

-- The fields in the goal description card are identified below along with a brief description

of their content.

U

85

Scrolling Field "goalText" -- the detailed description of the goal in a scrolling field

Scrolling Field "subgoals" -- the titles of the supporting subgoals in a scrolling field

Field "goalDesc" -- the title of the goal

Field "goalAuth" -- the initials of the person who entered the goal

Field "goalDate" -- the date the goal was entered

Field "priority" -- if desired, establish a priority for this goal

-- The following fields are "hidden" fields which offer a way of storing information on a

field without showing it on the display:

Hidden Field "children" -- the card numbers of the subordinate goals in this stack

Hidden Field "parent" -- the card numbers of the superordinate goal in this stack

a. Hidden Field "scenario names" -- the titles of any scenarios associated with the goal

Hidden Field "scenario cards" -- the location of the scenarios' begin cards

Hidden Field "constraint names" -- the titles of any constraints

Hidden Field "constraint cards" -- the card numbers of those constraints in the

Constraints stack

Hidden Field "issue names" -- the titles of any issues associated with the goal description

Hidden Field "issue cards" -- the card numbers of those issues within the issues set

The following is a list of the buttons associated with the goal description cards.

They represent the actions that can be taken while a goal description card is on the screen.

The actions for these buttons are controlled in the stack script that follows. The script is

not associated directly with the buttons themselves to save space. A script in HyperCard is

event-driven. An event such as a MouseUp (a click on the mouse) passes a message up a

hierarchy of HyperCard objects where it activates a script if is encountered. The following

buttons have no scripts associated with them, so the message passes on to the stack script

described later.

86 ,

Button "delete" -- delete this goal description card and all subordinate goals

Button "higher" -- go to the superordinate goal

Button "scenario" -- create, review, or delete the scenarios associated with this goal

Button "issue" -- create, review, or delete the issues associated with this goal

Button "subgoals" -- create, review, or delete the sugoals associated with this goal

(this is the button on which the browse tool is sitting in Figure B-1)

Button "index" -- go to the stack overview index

Button "constraint" -- create, review, or delete the constraints associated with this goal

Button "return" -- this button has the following script associated with it

Script:

on mouseUp

pop card -- go to the card that has been previously pushed into a stack

end mouseUp

This script is associated with the stack, it acts as a handler for the buttons on the

goal description cards throughout the stack. Since there are no scripts associated with these

buttons or the cards, the MouseUp event passes a message to the stack level where it is

captured by this script. The reason for doing this is that it is more efficient that associating

scripts with every button in the stack.

Stack Script:

on MouseUp -- MouseUp is an event that activates a script

if the target contains "button" then -- target identifies that the event originated

with a button

put the short name of the target into ButtName -- store the name of the button

ChooseAction Buttname -- call a subroutine and pass Buttname as a parameter

end if

end MouseUp

L,

I V A V A A V ,*V :j= -

87 ",

.,

on ChooseAction ButtName

if word 1 of ButtName is "Subgoals" then -- the "Subgoal" button was clicked S.

-- calculate the line number of the desired entry

put item 2 of rect of background button "subgoals" into start

subtract the scroll of field "subgoals" from sta-t

put 1 + (item 2 of the ClickLoc - start) div 13 into LineNum

DoSubGoal LineNum -- perform "DoSubGoal" passing the parameter "LineNum"

end if

if word 1 of ButtName is "higher" then -- the "higher" button was clicked

Goffigher

end if

if word 1 of ButtName is "scenario" then -- the "scenario" button was clicked

DoScenario
PS

end if

if word 1 of ButtName is "constraint" then -- the "constraint" button was clicked

DoConstraint

end if

if word 1 of ButtName is "issue" then -- the "issue" button was clicked

DoIssue

end if

if word 1 of ButtName is "delete" then -- the "delete" button was clicked

DoDelete

end if

if word 1 of ButtName is "index" then -- the "index" button was clicked

go to card "general goal index"

end if

' '5-, ~*.S".*%*'.*'* ~ |

88

end ChooseAction

on DoSubGoal LineNum

-- this is a subroutine that processes the subgoals for a goal description

if line lineNum of field "subgoals" is empty then

-- fields can be manipulated like arrays by using "line" numbers as an index

answer "no subgoal specified" with "OK"

exit DoSubGoal

end if

if line LineNum of field "children" is empty then

answer "Create a detail for this subgoal?" with "Cancel" or "OK"

if it is "cancel" then

exit DoSubGoal

else

set the lockScreen to true

CreateSub LineNum

end if

end if

go to card id (line lineNum of field "children")

end DoSubGoal

on CreateSub LineNum

-- a subroutine to create a new subgoal. This creates and links a new card.

global UserInits

put word 3 of id of this card into linkBack -- store the name of the current card

put line LineNum of field "SubGoals" into SuhGoal

doMenu "New Card"

89

put SubGoal into field "GoalDesc"

put Userlnits into field "GoalAuth"

put the date into field "GoalDate"

put LinkBack into field "parent"

put word 3 of id of this card into LinkDown

go to card id LinkBack

put LinkDown into line LineNum of field "children"

end CreateSub

on goHigher -- this subroutine goes to the superordinate goal (the parent)

if field "parent" is e-'pty then

answer "This is the root" with "OK"

else

go to card id (field "parent")

end if

end goHigher

on DoDelete -- This subroutine deletes a description card and all of its subordinate goals

if field "parent" is empty then

answer "Cannot delete the root goal" with "OK"

exit DoDelete

end if

answer "Delete this goal and all subgoals?" with "Ok" or "cancel"

if it is "OK" then

set LockScreen to true -- LockScreen is a system function to freeze the display S

set the cursor to 4 -- displays a watch type cursor to indicate processing

ProcDelete

KN
, ', , -, ,-.-,- ,-. ,-. .- -.-.-.. .. .-.-.- ... : °. .- . .-- .-. .- , . , ... -..

90

end if

end DoDelete

on ProcDelete -- This subroutine carries out the actual deletion of the cards

if field "children" is empty then

put word 3 of id of this card into LinkBack

put field "parent" into goParent

doMenu "Delete Card"

go to card id goParent

FixParent LinkBack

else

repeat until field "children" is empty

go to card id (line 1 of field "children")

ProcDelete

end repeat
.1,

ProcDelete

end if

end ProcDelete

on FixParent LinkBack -- This subroutine maintains the links after a deletion

put 1 into countl
5'

repeat until line count 1 of field "subgoals" is empty

if line countl of field "children" is LinkBack then

delete line countl of field "children"

delete line countI of field "subgoals"

else

add I to countl

L. "-AV . .^-5'S.-. %%%.S- %"*-5'.A-ow * ' V ' % '

91

end if

end repeat

end FixParent

on DoScenario

-- this subroutine maintains the scenarios associated with a goal description, it does so by

passing the names and locations of t±e scenarios linked to this goal to an index card in the

scenario stack where the scenarios exist and the maintenance is performed.

if field "scenario cards" is empty then

answer "No scenarios exist, create?" with "yes" or "cancel"

if it is "cancel" then

exit DoScenario

end if

end if

global HoldScNames, HoldScCards, LinkBack, GoalTitle

put field "scenario Names" into HoldScNames

-- move the hidden fields into global variables

put field "scenario cards" into HoldScCards

put field "GoalDesc" into GoalTitle

put word 3 of id of this card into LinkBack

go to card "goal scenario index" of stack "scenarios"

end DoScenario

on DoConstraint

-- this subroutine maintains the constraints (see comments on DoScenarios)

if field "constraint cards" is empty then

answer "No constraints exist, create?" with "yes" or "cancel"

92

if it is "cancel" then

exit DoConstraint

end if

end if

global HoldScNames, HoldScCards, LinkBack, GoalTitle

put field "constraint Names" into HoldScNames

put field "constraint cards" into HoldScCards

put field "GoalDesc" into GoalTitle

put word 3 of id of this card into LinkBack

go to card "goal constraint index" of stack "constraints"

end DoConstraint

on Dolssue

-- this subroutine maintains the issues associated with this goal description card

(see comments on DoScenarios)

if field "issue cards" is empty then

answer "No issues exist, create?" with "yes" or "cancel"

if it is "cancel" then

exit DoIssue

end if

end if

global HoldScNames, HoldScCards, LinkBack, GoalTitle

put field "Issue Names" into HoldScNames

put field "Issue cards" into HoldScCards

put field "GoalDesc" into GoalTitle

put word 3 of id of this card into LinkBack
"''

93

go to card "goal issue index" of stack "issues"

end DoIssue

r 6 File Edit Go Tools Objects

BRP options Goal Oueruiew form index

can To get the entries, click on the form index button.

f, library overviewmai ntai n i nventor y
support loans

Check out books -SCEN -CONS
Check in books

Provide an on-line card catalog
query by author, call number, title, or subject
provide availability information

Figure B-2. An overview for browsing the goal stack

The Goal Overview Card

We now will describe how a browsing capability is provided in HyperCard using ,
an outline of the goal titles. The card illustrated in Figure B-2 is the goal overview card in

the prototype system. From it, any card can be accessed from within the goal

decompositic' stack. To do so, the index must be compi!ed by clicking on thc "form inidcx

button", this will display the entries in the scrolling field (this script will be described) In

addition, information is provided about links to the card, indicated by -SCEN (scenarios), -

K r ,

94

CONS (constraints), or -ISS (issues). To get to a particular goal description card, the user

clicks on the button to the left of, and even with the entry in the overview.

-- Associated with this card is a small script to empty the field when the card is closed.

Card Script:

on CloseCard

put empty into card field "index"

end CloseCard

-- There are three fields associated with this card.

Scrolling Field "index" -- displays the outline generated in a scrolling field

Hidden Field "entries" -- holds the corresponding locations for the items displayed

in the outline

Hidden Field "info" -- contains the information displayed by activating the "help" button

-- The buttons associated with this card have their scripts associated with the card since

there is only one card. The buttons are described along with their scripts.

Button "index button" -- this is the long button to the left of the overview's

scrolling field where the browse tool is situated (Figure B-2)

Script:

on mouseUp

-- calculate the line number of the desired entry in the outlines field which is the same as the

line number of the hidden field entries.

put item 2 of rect of card button "index hutton" into start

subtract the scroll of card field "index" from start

put I + (item 2 of the ClickLoc - start) div 13 into LineNum

if line LineNum of card field "index" is empty then

~~~~l - -- J-- --*--- -.07 II:Jr

95

answer "Cant go to a nameless goal" with "OK"

else

push card

go to card id (line L ineNun of card field "Entries")

end if

end mouseUp

Button "cancel" -- cancel this card, go back to card last pushed

Script:

on mouseUp

pop card

end mouseUp

Button "SBRP options" -- return to the SBRE tool's main menu

Script:

on mouseUp

go to card "options" of "SBRP"

end mouseUp

Button "help" -- the question mark button displays help information by showing

the hidden field info

Script:

on mouseUp

set visible of card field "info" to not the visible of card field "info"

end mouseUp aN

IN

96

Button "form index" -- compile the overview of titles, locations, and link information for

the goal description cards in the stack

Script:

on mouseUp

put empty into HoldEntries

put empty into HoldTitles %

put empty into card field "index"

put 1 into LastLine

put 0 into RecurLevel

set the lockScreen to true

set the cursor to 4

go to card "root goal"

FormIndex

go to card "general goal index"

if HoldTitles is empty then

answer "No entries found" with "OK"

else

put HoldTitles into card fieid "index"

put HoldEntries into card field "Entries"

end if

end mouseUp

on FormIndex -- recursively process the nodes in the heirarchy

global HoldTitles, HoldEntries, LastLine, RecurLevel

put field "GoalDesc" into line LastLine of HoldTitles

put word 3 of id of this card into line LastLine of HoldEntries

|a

97

repeat for RecurLevel

put "before word 1 of line LastLine of HoldTitles -- indent the entry to indicate

level

end repeat

if not (field "scenario cards" is empty) then -- if scenario links are found, indicate

so put the number of words of line LastLine of HoldTitles into NumWords

add 1 to NumWords

put" -SCEN" after word NumWords of line LastLine of HoldTitles

end if

if not (field "constraint cards" is empty) then -- indicate if constraint links were

found

put the number of words of line LastLine of HoldTitles into NumWords

add 1 to NumWords

put" -CONS" after word NumWords of line LastLine of HoldTitles

end if

if not (field "issue cards" is empty) then -- indicate if issue links were found

put the number of words of line LastLine of HoldTitles into NumWords

add 1 to NumWords

put " -ISS" after word NumWords of line LastLine of HoldTitles

end if

put word 3 of id of this card into HoldPlace

add 1 to LastLine

if field "children" is empty then -- exit the routine if no subgoals exist for this goal

exit FormIndex

else

add 1 to RecurLevel -- otherwise call the routine again to process the

subgoals

98

put 1 into LineCount

repeat until line LineCount of field "children" is empty

go to card id (line LineCount of field "children")

FormIndex

add 1 to LineCount

go to card id HoldPlace

end repeat

subtract 1 from RecurLevel

end if

end FormIndex

aa

4.

.4.n
5°,

5,,

I.

.i'

REFERENCES

Ac67 Ackoff, Russell L. (1967), Management Misinformation Systems, Management
Science, 14 (4), 147-156.

A184 Alavi, Maryam (1984), An Assessment of the Prototyping Approach to Information
Systems Development, Communications of the ACM, 27 (6), 556-563.

Am76 Amkreutz, J. H. A. E. (1976), Cybernetic Model of the Design Process, Computer
Aided Design, 8 (3), 187-191.

An83 Andrews, William C. (1983), Prototyping Information Systems, Journal of
Systems Management 34 (9), 16-18.

Ba77 Balzer, R., Goldman, N., and Wile, D. (1977), Informality in Program
Specifications, IEEE Transactions on Software Engineering, SE-4 (2), 94-103.

Bo84 Boehm, Barry W., Gray, Terrence E., and Seewaldt, Thomas (1984), Prototyping
Versus Specifying: A Multiproject Experiment, IEEE Transactions on Software
Engineering, SE-10 (3), 290-302.

Bo78 Boland, Richard J. Jr. (1978), The Process and Product of System Design,
Management Science, 24 (9), 887-898.

Bo7l Bordon, George A. (1971), An Introduction to Human-Communication Theory,
Dubuque, Iowa: Wm. C. Brown Company Publishers.

Br75 Brooks, F. P. Jr. (1975), The Mythical Man-Month, Reading, Mass.:
Addison-Wesley.

Br87 Brooks, F. P. Jr. (1987), No Silver Bullet, Essence and Accidents of Software
Engineering IEEE Computer, April 1987, 10-19.

Ca79 Carroll, John M., Thomas, John C., and Malhotra, Ashok (1979), -

Clinical-Experimental Analysis of Design Problem Solving, Design Studies, 1 (2),
84-92.

Ca80 Carroll, John M., Thomas, John C., Miller, Lance A., and Friedman, Herman P.
(1980), Aspects of Solution Structure in Design Problem Solving, American
Journal of Psychology, 93 (2), 269-284.

Co86 Conklin, Jeff (1986), A Theory and Tool for Coordination of Design
Conversations, MCC Technical Report STP-236-86, Microelectronics and
Computer Technology Corporation, Austin, Tex.

Co87 Conklin, Jeff (1987), Hypertext: An Introduction and Survey, IEEE Computer,
20 (9), 17-41.

99

i , .

0, ' '?';',." ,- , ?' ? .',-., " ":'. , :';,, ' , 2 '-r'0¢,€' ,7. , , , - , ','¢,. '', ,'¢ ,, , ,';,. -,, /,.-,.,O ,,,' , .1

100

Co88 Conklin, Jeff, and Begeman, Michael (1988), gIBIS: A Hypertext Tool for Team
Design Deliberation (extended abstract), MCC Technical Report STP-016-88,
Microelectronics and Computer Technology Corporation, Austin, Tex.

Co85 Conklin, Jeff, and Richter, Charles (1985), Support for Exploratory Design, MCC
Technical Report STP-1 17-85, Microelectronics and Computer Technology
Corporation, Austin, Tex.

Cr82 Crowley, D. J. (1982), Understanding Communication: The Signifying Web, New
York: Gordon and Breach Science Publishers.

Da82 Davis, G. B. (1982), Strategies for Information Requirements Determination, IBM
Systems Journal, 21 (1), 4-30.

F183 Floyd, Christiane (1983), A Systematic Look at Prototyping, Approaches to
Prototyping. Proceedings of Ehe Working Conference on Prototyping, Namur,
Belgium.

G182 Gladden, G. R. (1982), Stop the Life-Cycle, I Want to Get Off, ACM SIGSOFT
Software Engineering Notes. 7 (2). 35-39.

Go83 Gomaa, Hassan (1983), The Impact of Rapid Prototyping on Specifying Users
Requirements, ACM SIGSOFT Software Engineering Notes, 8 (9), 17-27.

Go87 Goodman, Danny (1987), The Complete HyperCard Handbook, New York: %
Bantam Books, Inc.

Gu87 Guindon, R., Curtis, Bill, and Krasner, Herb (1987), A Model of Proccesses in
Software Design: An Analysis of Breakdowns in Early Design Activities by
Individuals, MCC Technical Report #STP-283-87, Microelectronics and Computer
Technology Corporation, Austin, Tex.

Ho82 Hooper, James W., and Hsia, Pei (1982), Scenario-Based Prototyping for
Requirements Identification, ACM SIGSOFT Software Engineering Notes, 7 (5), '.
88-92.

IE84 IEEE Guide to Software Requirements Specifications, ANSIIEEE Std. 830-1984,
New York: Institute of Electrical and Electronics Engineers, Inc.

Je84 Jenkins, A. M., Naumann, Justus D., and Wetherbe, James C. (1984), Empirical
Investigation of Systems Development Practices and Results, Information and
Management, 7, 73-82.

Jo83 Johnson, James R. (1983), A Prototypical Success Story, Datamation, 29 (11),
251-256.

Ka88 Kaufman, L. D. (1988), Scenario Selection and Implementation Techniques for
Scenario-Based Rapid Prototyping, SERC-TR- 19-F, Computer and Information r
Sciences Department, University of Florida, Gainesville, FL.

K186 Klapp, Orrin E. (1986), Overload and Boredom: Essays on the Quality of Life in
the Information Society, New York: Greenwood Press.

•.j

r7-97

101

La84 Langle, Gernot B., Leitheiser, Robert L., and Naumann, Justus D. (1984), A
Survey of Applications Systems Prototyping in Industry, Information &
Management, 7, 273-284.

Le82 Lehman, M. M. (1982), The Role of Executable Metric Models in the Programming
Process, Proc. ACM SIGSOFT Software Engineering Symposium on Rapid
Prototyping, Columbia, MD.

Le87 Leite, Julio Cesar S. P. (1987), A Survey on Requirements Analysis, Advanced
Software Engineering Project, RTP-07 1, University of California at Irvine.

Ma80 Malhotra, Ashok, Carroll, John M., Thomas, John C., and Miller, Lance A.
(1980), Cognitive Processes in Design, International Journal Man-Machine ,,
Sudies, 12, 119-140.

Ma82 Mason, R. E. A., Carey, T. T., and Benjamin, A. (1982), Act/l: A Tool For
Information Systems Prototyping. ACM SIGSOFT Software Engineering Notes, 7
(5), 120-126.

Mc87 McVay, Monte (1987), Models of Systems Development and Design,
Unpublished.

My85 Myers, Ware (1985), MCC: Planning the Revolution in Software, IEEE Softwarc,
November 1986, 68-73.

Ne72 Newell, Alan and Simon, Herbert A. (1972), Human Problem Solving, .%
Englewood Cliffs, N.J.: Prentice-Hall.

Ri73 Rittel, Horst W. J. and Webber, Melvin M. (1973), Dilemmas in a General Theory
of Planning, Policy Sciences, 4, 155-169.

Sa87 Sasso, William C., and McVay, Monte (1987), The Constraints and Assumptions
Interpretation of Systems Design: A Descriptive Process Model, Center fo Research V
on Informations Systems, Graduate School of Business Administration, New York
University.

Sc81 Scharer, Laura (1981), Pinpointing Requirements, Datamation, 27 (4), 139-151.

Sc74 Scott, R. F., and Simmons, D. B. (1974), Programmer Productivity and the Delphi
Technique, Datamation, 20 (5), 71-73.

Si73 Simon, Herbert A. (1973), The Structure of Ill Structured Problems, Artificial
Intelligence, 4, 181-201.

So85 Sommerville, Ian (1985), Software Engineering, Reading, Mass.: Addison-Wesley
Publishing Co.

St83 Steele, Anne C., and Nowell, Barbara J. (1983), Conceptual Prototyping, 1983
ACM Annual Conference, 226-228.

Ta82 Taylor, Tamara, and Standish, Thomas A. (1982), Initial Thoughts on Rapid
Prototyping Techniques, ACM SIGSOFT Software Engineering Notes, 7 (5),
160-166.

,- ',-.q '".............-

102

Tu87 Turner, Gary Stephen (1987), Prototyping: A Better Way To Develop Software,
Master's Thesis, Georgia Institute of Technology.

Vi83 Vitalari, Nicholas P., and Dickson, Gary W. (1983), Problem Solving for Effective
Systems Analysis: An Experimental Exploration, Communications of the ACM, 26
(11), 948-955.

We49 Weaver, Warren (1949), The Mathematics of Communication, Scientific American,
181 (1), 11-15.

We87 Wexelblat, Alan (1987), Report on Scenario Technology, MCC Technical Report
STP-139-87, Microelectronics and Computer Technology Corporation, Austin,
Tex.

Yo87 Young, Richard M., and Barnard, Phil (1987), The Use of Scenarios in Human-
Computer Interaction Research: Turbocharging the Tortoise of Cumulative Science,
CHI + GI 87 Human Factors in Computing Systems and Graphics Interface,
Toronto, 291-296.

a',.

-Pa° !

. ,e . , 74,, ., ." o " . '. Y . : ,.? .',., ',..' "." .; ¢ _ o . , ', ' ' t'.."; t ,"2€ . , , ., ,'rq" .".¢

a i~ , i '.,.. ' , •, -_

BIOGRAPHICAL SKETCH

Hilliard Baxter Holbrook III " "

the son of Commander Hilliard Baxter Holbrook II, the grandson of Rear Admiral Hilliard

Baxter Holbrook, and the grandson of Godfrey a Swiss 4 Typical of many
0

military offspring, he attended six different schools before graduating from high school in

1971. He was then employed as a carpenter in Virginia Beach before enlisting in the

United States Air Force in 1975. Upon completion of basic training, he was trained as an

explosive ordnance disposal specialist and served at Eglin AFB, Florida, for five years. It

was there he met, and was coerced into marriage by, the former Jane Doherty. In 1980,

the Air Force sent then Staff Sergeant Holbrook to the University of Florida to pursue a

bachelor's degree in computer science. From there, he attended Officer Traiaing School

and was commissioned a second lieutenant on August 4, 1982. He then spent four years U
as a computer systems analyst at the Air Force Data Systems Design Office at Gunter AFS,

Alabama. Duwing this assignment, he was selected to pursue his master's degree in

computer science at the University of Florida. Upon graduation, Captain Holbrook will

serve as an instructor for computer science at the US Air Force Academy.

gi

103

~~11021

